remoteConstructRnormVector {bigGP} | R Documentation |
Create Distributed Vector or Matrix of Random Normals
Description
remoteConstructRnormVector
constructs a distributed vector of
standard normal random variables, while
remoteConstructRnormMatrix
constructs a distributed matrix. The output object can both be contained within environments or
ReferenceClass objects as well as the global environment on the slave processes.
Usage
remoteConstructRnormVector(objName, objPos = ".GlobalEnv", n, h = 1)
remoteConstructRnormMatrix(objName, objPos = ".GlobalEnv", n1, n2, h1 = 1, h2 = 1)
Arguments
objName |
the name to use for the vector or matrix, on the slave processes. |
objPos |
where to do the assignment of the output matrix or vector, given as a character string (unlike
|
n |
a positive integer, the length of the vector |
h |
a positive integer, the block replication factor, |
n1 |
a positive integer, the number of rows of the matrix. |
n2 |
a positive integer, the number of columns of the matrix. |
h1 |
a positive integer, the block replication factor, |
h2 |
a positive integer, the block replication factor, |
Warning
Note that a vector and a one-column matrix are stored differently,
with padded columns included for the matrix. For
other distributed computation functions, providing the argument n2 = NULL
indicates the input is a vector, while n2 = 1
indicates a
one-column matrix.
See Also
Examples
## Not run:
if(require(fields)) {
SN2011fe <- SN2011fe_subset
SN2011fe_newdata <- SN2011fe_newdata_subset
SN2011fe_mle <- SN2011fe_mle_subset
nProc <- 3
n <- nrow(SN2011fe)
m <- nrow(SN2011fe_newdata)
nu <- 2
inputs <- c(as.list(SN2011fe), as.list(SN2011fe_newdata), nu = nu)
prob <- krigeProblem$new("prob", numProcesses = nProc, n = n, m = m,
predMeanFunction = SN2011fe_predmeanfunc, crossCovFunction = SN2011fe_crosscovfunc,
predCovFunction = SN2011fe_predcovfunc, meanFunction = SN2011fe_meanfunc,
covFunction = SN2011fe_covfunc, inputs = inputs, params = SN2011fe_mle$par,
data = SN2011fe$flux, packages = c("fields"))
remoteCalcChol(matName = 'C', cholName = 'L', matPos = 'prob',
cholPos = 'prob', n = n, h = prob$h_n)
remoteConstructRnormVector('z', n = n, h = prob$h_n)
remoteMultChol(cholName = 'L', inputName = 'z', outputName = 'result',
cholPos = 'prob', n1 = n, h1 = prob$h_n)
realiz <- collectVector('result', n = n, h = prob$h_n)
r = 10
remoteConstructRnormMatrix('z2', n1 = n, n2 = r, h1 = prob$h_n, h2 = 1)
remoteMultChol(cholName = 'L', inputName = 'z2', outputName = 'result2',
cholPos = 'prob', n1 = n, n2 = r, h1 = prob$h_n, h2 = 1)
realiz2 <- collectRectangularMatrix('result2', n1 = prob$n, n2 = r, h1
= prob$h_n, h2 = 1)
}
## End(Not run)