KOS {biClassify} | R Documentation |
Function which generates feature weights, discriminant vector, and class predictions.
Description
Returns a (m x 1) vector of predicted group membership (either 1 or 2) for each data point in X. Uses Data and Cat to train the classifier.
Usage
KOS(TestData = NULL, TrainData, TrainCat, Method = "Full",
Mode = "Automatic", m1 = NULL, m2 = NULL, Sigma = NULL,
Gamma = NULL, Lambda = NULL, Epsilon = 1e-05)
Arguments
TestData |
(m x p) Matrix of unlabelled data with numeric features to be classified. Cannot have missing values. |
TrainData |
(n x p) Matrix of training data with numeric features. Cannot have missing values. |
TrainCat |
(n x 1) Vector of class membership corresponding to Data. Values must be either 1 or 2. |
Method |
A string of characters which determines which version of KOS to use. Must be either "Full" or "Subsampled". Default is "Full". |
Mode |
A string of characters which determines how the reduced sample paramters will be inputted for each method. Must be either "Research", "Interactive", or "Automatic". Default is "Automatic". |
m1 |
The number of class 1 compressed samples to be generated. Must be a positive integer. |
m2 |
The number of class 2 compressed samples to be generated. Must be a positive integer. |
Sigma |
Scalar Gaussian kernel parameter. Default set to NULL and is automatically generated if user-specified value not provided. Must be > 0. User-specified parameters must satisfy hierarchical ordering. |
Gamma |
Scalar ridge parameter used in kernel optimal scoring. Default set to NULL and is automatically generated if user-specified value not provided. Must be > 0. User-specified parameters must satisfy hierarchical ordering. |
Lambda |
Scalar sparsity parameter on weight vector. Default set to NULL and is automatically generated by the function if user-specified value not provided. Must be >= 0. When Lambda = 0, SparseKOS defaults to kernel optimal scoring of [Lapanowski and Gaynanova, preprint] without sparse feature selection. User-specified parameters must satisfy hierarchical ordering. |
Epsilon |
Numerical stability constant with default value 1e-05. Must be > 0 and is typically chosen to be small. |
Details
Function which handles classification. Generates feature weight vector and discriminant coefficients vector in sparse kernel optimal scoring. If a matrix X is provided, the function classifies each data point using the generated feature weight vector and discriminant vector. Will use user-supplied parameters Sigma, Gamma, and Lambda if any are given. If any are missing, the function will run SelectParams to generate the other parameters. User-specified values must satisfy hierarchical ordering.
Value
A list of
Predictions |
(m x 1) Vector of predicted class labels for the data points in TestData. Only included in non-null value of X is provided. |
Weights |
(p x 1) Vector of feature weights. |
Dvec |
(n x 1) Discrimiant coefficients vector. |
References
Lapanowski, Alexander F., and Gaynanova, Irina. “Sparse feature selection in kernel discriminant analysis via optimal scoring”, Artificial Intelligence and Statistics, 2019.
Examples
Sigma <- 1.325386 #Set parameter values equal to result of SelectParam.
Gamma <- 0.07531579 #Speeds up example.
Lambda <- 0.002855275
TrainData <- KOS_Data$TrainData
TrainCat <- KOS_Data$TrainCat
TestData <- KOS_Data$TestData
TestCat <- KOS_Data$TestCat
KOS(TestData = TestData,
TrainData = TrainData,
TrainCat = TrainCat ,
Sigma = Sigma ,
Gamma = Gamma ,
Lambda = Lambda)