bgev.mle {bgev} | R Documentation |
Parameter estimation of bimodal GEV distribution based on real data that appears to be bimodal.
Description
Finds the maximum likelihood estimators of the bimodal GEV distribution parameters by minimizing the log-likelihood function of the data.
Usage
bgev.mle(x, lower = c(-3, 0.1, -3, -0.9), upper = c(3, 3, 3,3), itermax = 50)
Arguments
x |
a unidimensional vector containing observations to estimate a bimodal GEV distribution |
lower |
a vector of dimension 4 containing the lower limit for each of the bimodal GEV parameters where the search is going to take place. |
upper |
a vector of dimension 4 containing the upper limit for each of the bimodal GEV parameters where the search is going to take place. |
itermax |
maximum number of interations when finding a good starting value for the optimization algorithm. |
Value
A list with components returned by the optim R function for which the main values are
par |
best parameters of bimodal gev fitting the data |
value |
value of the log-likelihood corresponding to 'par' |
Author(s)
Cira Otiniano Author [aut], Yasmin Lirio Author [aut], Thiago Sousa Developer [cre]
References
OTINIANO, Cira EG, et al. (2023). A bimodal model for extremes data. Environmental and Ecological Statistics, 1-28. http://dx.doi.org/10.1007/s10651-023-00566-7
Examples
# generate 100 values distributed according to a bimodal GEV
x = rbgev(50, mu = 0.2, sigma = 1, xi = 0.5, delta = 0.2)
# estimate the bimodal GEV parameters using the generated data
bgev.mle(x)