BetaHC {betaSandwich} | R Documentation |
Estimate Standardized Regression Coefficients and the Corresponding Robust Sampling Covariance Matrix Using the Heteroskedasticity Consistent Approach
Description
Estimate Standardized Regression Coefficients and the Corresponding Robust Sampling Covariance Matrix Using the Heteroskedasticity Consistent Approach
Usage
BetaHC(
object,
type = "hc3",
alpha = c(0.05, 0.01, 0.001),
g1 = 1,
g2 = 1.5,
k = 0.7
)
Arguments
object |
Object of class |
type |
Character string.
Correction type.
Possible values are
|
alpha |
Numeric vector.
Significance level |
g1 |
Numeric.
|
g2 |
Numeric.
|
k |
Numeric.
Constant |
Value
Returns an object
of class betasandwich
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- gamma_n
Asymptotic covariance matrix of the sample covariance matrix assuming multivariate normality.
- gamma_hc
Asymptotic covariance matrix HC correction.
- gamma
Asymptotic covariance matrix of the sample covariance matrix.
- acov
Asymptotic covariance matrix of the standardized slopes.
- vcov
Sampling covariance matrix of the standardized slopes.
- est
Vector of standardized slopes.
Author(s)
Ivan Jacob Agaloos Pesigan
References
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
See Also
Other Beta Sandwich Functions:
BetaADF()
,
BetaN()
,
DiffBetaSandwich()
,
RSqBetaSandwich()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaHC(object)
# Methods -------------------------------------------------------
print(std)
summary(std)
coef(std)
vcov(std)
confint(std, level = 0.95)