BetaADF {betaSandwich} | R Documentation |
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix Using the Asymptotic Distribution-Free Approach
BetaADF(object, alpha = c(0.05, 0.01, 0.001))
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Note that while the calculation in BetaADF()
is different from betaDelta::BetaDelta()
with type = "adf"
,
the results are numerically equivalent.
BetaADF()
is appropriate when sample sizes are moderate to large
(n > 250
).
BetaHC()
is recommended in most situations.
Returns an object
of class betasandwich
which is a list with the following elements:
Function call.
Function arguments.
Processed lm
object.
Asymptotic covariance matrix of the sample covariance matrix assuming multivariate normality.
Asymptotic covariance matrix HC correction.
Asymptotic covariance matrix of the sample covariance matrix.
Asymptotic covariance matrix of the standardized slopes.
Sampling covariance matrix of the standardized slopes.
Vector of standardized slopes.
Ivan Jacob Agaloos Pesigan
Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37(1), 62–83. doi:10.1111/j.2044-8317.1984.tb00789.x
Dudgeon, P. (2017). Some improvements in confidence intervals for standardized regression coefficients. Psychometrika, 82(4), 928–951. doi:10.1007/s11336-017-9563-z
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
Other Beta Sandwich Functions:
BetaHC()
,
BetaN()
,
DiffBetaSandwich()
,
RSqBetaSandwich()
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaADF(object)
# Methods -------------------------------------------------------
print(std)
summary(std)
coef(std)
vcov(std)
confint(std, level = 0.95)