| DeltaRSqNB {betaNB} | R Documentation |
Estimate Improvement in R-Squared and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Improvement in R-Squared and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
DeltaRSqNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of improvement in R-squared
(\Delta R^{2})
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of \Delta R^{2},
where \alpha is the significance level.
Value
Returns an object
of class betanb which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\Delta R^{2}.- vcov
Sampling variance-covariance matrix of
\Delta R^{2}.- est
Vector of estimated
\Delta R^{2}.- fun
Function used ("DeltaRSqNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
BetaNB(),
DiffBetaNB(),
NB(),
PCorNB(),
RSqNB(),
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# DeltaRSqNB ---------------------------------------------------------------
out <- DeltaRSqNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)