BetaNB {betaNB} | R Documentation |
Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Description
Estimate Standardized Regression Coefficients and Generate the Corresponding Sampling Distribution Using Nonparametric Bootstrapping
Usage
BetaNB(object, alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
alpha |
Numeric vector.
Significance level |
Details
The vector of standardized regression coefficients
(\boldsymbol{\hat{\beta}}
)
is estimated from bootstrap samples.
Confidence intervals are generated by obtaining
percentiles corresponding to 100(1 - \alpha)\%
from the generated sampling
distribution of \boldsymbol{\hat{\beta}}
,
where \alpha
is the significance level.
Value
Returns an object
of class betanb
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- thetahatstar
Sampling distribution of
\boldsymbol{\hat{\beta}}
.- jackknife
Jackknife estimates.
- est
Vector of estimated
\boldsymbol{\hat{\beta}}
.- fun
Function used ("BetaNB").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Beta Nonparametric Bootstrap Functions:
DeltaRSqNB()
,
DiffBetaNB()
,
NB()
,
PCorNB()
,
RSqNB()
,
SCorNB()
Examples
# Data ---------------------------------------------------------------------
data("nas1982", package = "betaNB")
# Fit Model in lm ----------------------------------------------------------
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
# NB -----------------------------------------------------------------------
nb <- NB(
object,
R = 100, # use a large value e.g., 5000L for actual research
seed = 0508
)
# BetaNB -------------------------------------------------------------------
out <- BetaNB(nb, alpha = 0.05)
## Methods -----------------------------------------------------------------
print(out)
summary(out)
coef(out)
vcov(out)
confint(out, level = 0.95)