Delta {betaDelta} | R Documentation |
Delta Method
Description
Calculates delta method sampling variance-covariance matrix for a function of parameters using a numerical Jacobian.
Usage
Delta(
coef,
vcov,
func,
...,
theta = 0,
alpha = c(0.05, 0.01, 0.001),
z = TRUE,
df = NULL
)
Arguments
coef |
Numeric vector. Vector of parameters. |
vcov |
Numeric matrix. Matrix of sampling variance-covariance matrix of parameters. |
func |
R function.
|
... |
Additional arguments to pass to |
theta |
Numeric vector. Parameter values when the null hypothesis is true. |
alpha |
Numeric vector. Significance level/s. |
z |
Logical.
If |
df |
Numeric.
Degrees of freedom if |
Value
Returns an object
of class deltamethod
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- coef
Estimates.
- vcov
Sampling variance-covariance matrix.
- jacobian
Jacobian matrix.
- fun
Function used ("Delta").
Author(s)
Ivan Jacob Agaloos Pesigan
See Also
Other Delta Method Functions:
DeltaGeneric()
Examples
object <- glm(
formula = vs ~ wt + disp,
family = "binomial",
data = mtcars
)
func <- function(x) {
y <- exp(x)
names(y) <- paste0("exp", "(", names(x), ")")
return(y[-1])
}
Delta(
coef = coef(object),
vcov = vcov(object),
func = func,
alpha = 0.05
)