BetaDelta {betaDelta} | R Documentation |
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix
Description
Estimate Standardized Regression Coefficients and the Corresponding Sampling Covariance Matrix
Usage
BetaDelta(object, type = "mvn", alpha = c(0.05, 0.01, 0.001))
Arguments
object |
Object of class |
type |
Character string.
If |
alpha |
Numeric vector.
Significance level |
Value
Returns an object
of class betadelta
which is a list with the following elements:
- call
Function call.
- args
Function arguments.
- lm_process
Processed
lm
object.- gamma
Asymptotic covariance matrix of the sample covariance matrix.
- acov
Asymptotic covariance matrix of the standardized slopes.
- vcov
Sampling covariance matrix of the standardized slopes.
- est
Vector of standardized slopes.
Author(s)
Ivan Jacob Agaloos Pesigan
References
Jones, J. A., & Waller, N. G. (2015). The normal-theory and asymptotic distribution-free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80(2), 365–378. doi:10.1007/s11336-013-9380-y
Pesigan, I. J. A., Sun, R. W., & Cheung, S. F. (2023). betaDelta and betaSandwich: Confidence intervals for standardized regression coefficients in R. Multivariate Behavioral Research. doi:10.1080/00273171.2023.2201277
Yuan, K.-H., & Chan, W. (2011). Biases and standard errors of standardized regression coefficients. Psychometrika, 76(4), 670–690. doi:10.1007/s11336-011-9224-6
See Also
Other Beta Delta Functions:
DiffBetaDelta()
Examples
object <- lm(QUALITY ~ NARTIC + PCTGRT + PCTSUPP, data = nas1982)
std <- BetaDelta(object)
# Methods -------------------------------------------------------
print(std)
summary(std)
coef(std)
vcov(std)
confint(std, level = 0.95)