| no_transform {bestNormalize} | R Documentation | 
Identity transformation and center/scale transform
Description
Perform an identity transformation. Admittedly it seems odd to
have a dedicated function to essentially do I(x), but it makes sense to
keep the same syntax as the other transformations so it plays nicely
with them. As a benefit, the bestNormalize function will also show
a comparable normalization statistic for the untransformed data. If 
standardize == TRUE, center_scale passes to bestNormalize instead.
Usage
no_transform(x, warn = TRUE, ...)
## S3 method for class 'no_transform'
predict(object, newdata = NULL, inverse = FALSE, ...)
## S3 method for class 'no_transform'
print(x, ...)
center_scale(x, warn = TRUE, ...)
## S3 method for class 'center_scale'
predict(object, newdata = NULL, inverse = FALSE, ...)
## S3 method for class 'center_scale'
print(x, ...)
## S3 method for class 'no_transform'
tidy(x, ...)
Arguments
x | 
 A 'no_transform' object.  | 
warn | 
 Should a warning result from infinite values?  | 
... | 
 not used  | 
object | 
 an object of class 'no_transform'  | 
newdata | 
 a vector of data to be (potentially reverse) transformed  | 
inverse | 
 if TRUE, performs reverse transformation  | 
Details
no_transform creates a identity transformation object 
that can be applied to new data via the predict function.
Value
A list of class no_transform with elements
x.t | 
 transformed original data  | 
x | 
 original data  | 
n | 
 number of nonmissing observations  | 
norm_stat | 
 Pearson's P / degrees of freedom  | 
The predict function returns the numeric value of the transformation
performed on new data, and allows for the inverse transformation as well.
Examples
x <- rgamma(100, 1, 1)
no_transform_obj <- no_transform(x)
no_transform_obj
p <- predict(no_transform_obj)
x2 <- predict(no_transform_obj, newdata = p, inverse = TRUE)
all.equal(x2, x)