exp_x {bestNormalize} | R Documentation |

## exp(x) Transformation

### Description

Perform a exp(x) transformation

### Usage

```
exp_x(x, standardize = TRUE, warn = TRUE, ...)
## S3 method for class 'exp_x'
predict(object, newdata = NULL, inverse = FALSE, ...)
## S3 method for class 'exp_x'
print(x, ...)
```

### Arguments

`x` |
A vector to normalize with with x |

`standardize` |
If TRUE, the transformed values are also centered and scaled, such that the transformation attempts a standard normal |

`warn` |
Should a warning result from infinite values? |

`...` |
additional arguments |

`object` |
an object of class 'exp_x' |

`newdata` |
a vector of data to be (potentially reverse) transformed |

`inverse` |
if TRUE, performs reverse transformation |

### Details

`exp_x`

performs a simple exponential transformation in the context of
bestNormalize, such that it creates a transformation that can be estimated
and applied to new data via the `predict`

function.

### Value

A list of class `exp_x`

with elements

`x.t` |
transformed original data |

`x` |
original data |

`mean` |
mean after transformation but prior to standardization |

`sd` |
sd after transformation but prior to standardization |

`n` |
number of nonmissing observations |

`norm_stat` |
Pearson's P / degrees of freedom |

`standardize` |
was the transformation standardized |

The `predict`

function returns the numeric value of the transformation
performed on new data, and allows for the inverse transformation as well.

### Examples

```
x <- rgamma(100, 1, 1)
exp_x_obj <- exp_x(x)
exp_x_obj
p <- predict(exp_x_obj)
x2 <- predict(exp_x_obj, newdata = p, inverse = TRUE)
all.equal(x2, x)
```

*bestNormalize*version 1.9.1 Index]