model_negbin_indep {beaver} | R Documentation |
Negative Binomial Independent Dose Response
Description
Model settings for a negative binomial
distribution with an independent mean for each dose.
This function is to be used within a call
to beaver_mcmc()
.
Usage
model_negbin_indep(mu_b1, sigma_b1, mu_b2, sigma_b2, w_prior = 1)
Arguments
mu_b1 , sigma_b1 , mu_b2 , sigma_b2 |
hyperparameters. See the model description below for context. |
w_prior |
the prior weight for the model. |
Value
A list with the model's prior weight and hyperparameter values.
Negative Binomial Independent
Let y_{ij}
be the j
th subject on the k
th dose.
The model is
y_{ij} ~ NB(p_i, r_i)
p_i ~ Uniform(0, 1)
r_{ij} = (\mu_{ij} * p_i) / (1 - p_i)
log(\mu_{ij}) = x_{ij} * b1 + b2_k
b1 ~ N(`mu_b1`, `sigma_b1`^2)
b2_k ~ N(`mu_b2`, `sigma_b2`^2)
The model is parameterized in terms of the mean of the negative binomial distribution and the usual probability parameter p. The prior on the mean is an exponential model, and the prior on p at each dose is Uniform(0, 1). The model can adjust for baseline covariates, (
x_{ij}
).
See Also
Other models:
beaver_mcmc()
,
model_negbin_emax()
,
model_negbin_exp()
,
model_negbin_linear()
,
model_negbin_loglinear()
,
model_negbin_logquad()
,
model_negbin_quad()
,
model_negbin_sigmoid_emax()