bzCallStan {beanz} | R Documentation |
Call STAN models
Description
Call STAN to draw posterior samples for Bayesian HTE models.
Usage
bzCallStan(
mdls = c("nse", "fs", "sr", "bs", "srs", "ds", "eds"),
dat.sub,
var.estvar,
var.cov,
par.pri = c(B = 1000, C = 1000, D = 1, MU = 0),
var.nom = NULL,
delta = 0,
prior.sig = 1,
chains = 4,
...
)
Arguments
mdls |
name of the Bayesian HTE model. The options are:
|
dat.sub |
dataset with subgroup treatment effect summary data |
var.estvar |
column names in dat.sub that corresponds to treatment effect estimation and the estimated variance |
var.cov |
array of column names in dat.sub that corresponds to binary or ordinal baseline covariates |
par.pri |
vector of prior parameters for each model. See
|
var.nom |
array of column names in dat.sub that corresponds to nominal baseline covariates |
delta |
parameter for specifying the informative priors of |
prior.sig |
option for the informative prior on |
chains |
STAN options. Number of chains. |
... |
options to call STAN sampling. These options include
|
Value
A class beanz.stan
list containing
- mdl
name of the Bayesian HTE model
- stan.rst
raw
rstan
sampling
results- smps
matrix of the posterior samples
- get.mus
method to return the posterior sample of the subgroup treatment effects
- DIC
DIC value
- looic
leave-one-out cross-validation information criterion
- rhat
Gelman and Rubin potential scale reduction statistic
- prior.sig
option for the informative prior on
\sigma_g
- delta
parameter for specifying the informative priors of
\sigma_g
Examples
## Not run:
var.cov <- c("sodium", "lvef", "any.vasodilator.use");
var.resp <- "y";
var.trt <- "trt";
var.censor <- "censor";
resptype <- "survival";
var.estvar <- c("Estimate", "Variance");
subgrp.effect <- bzGetSubgrpRaw(solvd.sub,
var.resp = var.resp,
var.trt = var.trt,
var.cov = var.cov,
var.censor = var.censor,
resptype = resptype);
rst.nse <- bzCallStan("nse", dat.sub=subgrp.effect,
var.estvar = var.estvar, var.cov = var.cov,
par.pri = c(B=1000, MU = 0),
chains=4, iter=600,
warmup=200, thin=2, seed=1000);
rst.sr <- bzCallStan("sr", dat.sub=subgrp.effect,
var.estvar=var.estvar, var.cov = var.cov,
par.pri=c(B=1000, C=1000),
chains=4, iter=600,
warmup=200, thin=2, seed=1000);
## End(Not run)