plotnPV {bdpv} | R Documentation |
Plot experimental design for different setting in a single figure.
Description
The function creates a plot from the results of the function nPV
.
Usage
plotnPV(x, NPVpar = NULL, PPVpar = NULL, legpar = NULL, ...)
Arguments
x |
an object of class |
NPVpar |
a named list which specifies plot parameters for the negative predictive values, possible are |
PPVpar |
a named list which specifies plot parameters for the positive predictive values, possible are |
legpar |
a named list to pass arguments to the |
... |
further arguments to be passed to |
Details
Required sample sizes for different experimental settings and prevalences, needed to achieve a prespecified power can be calculated in dependence of the proportion of true negative and true positive compounds in the validation set, using function nPV
. This function draws a plot with the proportion of positive on x and the total sample size on y, combining all parameter settings in one plot. Parameter settings my be distinguished bylty
, lwd
, col
, pch
in NPVpar
and PPVpar
. By default a legend is drawn which can be further modified in legpar
.
Value
A plot.
Author(s)
Frank Schaarschmidt
References
Steinberg DM, Fine J, Chappell R (2009). Sample size for positive and negative predictive value in diagnostic research using case-control designs. Biostatistics 10, 1, 94-105.
See Also
plotnPV2
for a plot with separate subplots for each parameter setting
Examples
TEST<-nPV(se=c(0.9, 0.92, 0.94, 0.96, 0.98), sp=c(0.98, 0.96, 0.94, 0.92, 0.90),
pr=0.12, NPV0=0.98, PPV0=0.4, NPVpower = 0.8, PPVpower = 0.8,
rangeP = c(0.05, 0.95), nsteps = 100, alpha = 0.05)
plotnPV(TEST)
# plot parameters maybe introduced via ...
# the legend maybe modified via legpar:
plotnPV(TEST, log="y", legpar=list(x=0.6))
# own colour definitions
plotnPV(TEST, NPVpar=list(col=1:6, lwd=2, lty=1),
PPVpar=list(col=1:6, lwd=2, lty=3))