lpsmooth {bda} | R Documentation |
non-parametric regression
Description
To fit nonparametric regression model.
Usage
lpsmooth(y,x, bw, sd.y,lscv=FALSE, adaptive=FALSE,
from, to, gridsize,conf.level=0.95)
npr(y,x,sd.x,bw,kernel='decon',optimal=FALSE,adaptive=FALSE,
x0,from, to, gridsize,conf.level=0.95)
wlpsmooth(y,x,w,s.x,bw,from,to,gridsize,conf.level=0.95)
bootsmooth(y,x,type="relative",iter=100,conf.level=0.95)
Arguments
y , x |
Two numerical vectors. |
w |
weights |
s.x |
standard deviation of the measurement error – Laplacian errors are assumed. |
x0 , from , to , gridsize |
'x0' is the grid points where the fitted values will be evaluated. If it is missing, define a fine grid using the start point ("from"), end point ("to") and size ("gridsize"). |
bw |
Smoothing parameter. Numeric or character value is allowed. If missing, adaptive (LSCV) bandwidth selector will be used. |
kernel |
kernel type: "normal","gauss","nw","decon" (default), "lp","nadaraya-watson" |
lscv , adaptive |
If |
optimal |
Search for optimal bandwidth if TRUE. |
sd.y |
Standard deviation of |
sd.x |
Standard deviation of the measurement error |
conf.level |
Confidence level. |
iter |
Bootstrapping iteration number. |
type |
"relative" changes or "absolute" changes for effectiveness evaluation. |
Value
y |
Estimated values of the smooth function over a fine grid. |
x |
grid points where the smoothed function are evaluated. |
x0 , y0 |
cleaned data of x and y. |
conf.level |
confidence level of the simultaneous confidence bands. |
pars |
estimate parameters including smoothing bandwidth, and parameters for the tube formula. |
ucb , lcb |
upper and lower confidence bands. |
call |
function called |
Examples
x <- rnorm(100,34.5,1.5)
e <- rnorm(100,0,2)
y <- (x-32)^2 + e
out <- lpsmooth(y,x)
out
plot(out, type='l')
x0 <- seq(min(x),max(x),length=100)
y0 <- (x0-32)^2
lines(x0, y0, col=2)
points(x, y, pch="*", col=4)