Zipf.Normalize {bda} | R Documentation |
Zipf Normalization
Description
Zipf plot based normalization.
Usage
Zipf.Normalize(x, y, cutoff=6,optim=FALSE, method)
Arguments
x , y |
data: two vectors. |
cutoff |
a large enought value such that the values larger
than the |
optim |
Find the optimal normalization parameters if TRUE |
method |
use both power transformation and scalingby default. If 'scaling' is specified, skip power transformation. |
Value
x |
reference profile (not normalized) |
y |
normalized profile |
scaler |
Linear rescaling normalization parameter estimate |
power |
power transformation parameter estimate |
scaler.optim |
Optimized estimate of the linear rescaling parameter |
power.optim |
Optimzed estimate of the power transformation parameter. |
mat.optim |
A matrix of the objective function values generated to find the optimal estimates. |
coef |
Coefficient table to display the estimates. |
References
Wang, B. (2020) A Zipf-plot based normalization method for high-throughput RNA-Seq data. PLoS ONE, (in press).
Examples
data(LCL)
names(LCL)
x <- LCL$p47
y <- LCL$p107
outx <- ZipfPlot(x)
plot(outx,type='l')
outy <- ZipfPlot(y)
lines(outy,col=2)
out2 <- Zipf.Normalize(x,y)
outy2 <- ZipfPlot(out2$y)
lines(outy2,col=4)