goftype1 {bccp} | R Documentation |
Computing goodness-of-fit (GOF) measures under progressive type-I interval censoring scheme.
Description
The goodness-of-fit (GOF) measures consist of Anderson-Darling (AD
) and Cram\'eer-von Misses (CVM
) statistics for progressive type-I interval censoring scheme are given, respectively, by
AD=n\sum_{i=1}^{m}\gamma^{2}_{i}\log\left[\frac{A_{i+1}\bigl(1-A_i\bigr)}{A_i\bigl(1-A_{i+1}\bigr)}\right]+2n\sum_{i=1}^{m}\gamma_{i}\log\Bigl(\frac{1-A_{i+1}}{1-A_i}\Bigr)-n\bigl(A_{m+1}-A_1\bigr)
-n\log\Bigl(\frac{1-A_{m+1}}{1-A_1}\Bigr)+n\bigl(1-A_{m+1}-\log A_{m+1}\bigr),
{CVM}=n\sum_{i=1}^{m}\gamma^{2}_{i}\bigl(A_{i+1}-A_i\bigr)-n\sum_{i=1}^{m}\gamma_{i}\bigl(A^{2}_{i+1}-A^2_i\bigr)+\frac{n}{3}\bigl(A^{3}_{m+1}-A^{3}_{1}\bigr)+\frac{n}{3}\bigl(1-A_{m+1}\bigr)^3,
where R_0=0
, \gamma_{i}=\bigl(\sum_{j=1}^{i}{X_j}+\sum_{j=1}^{i-1}{R_j}\bigr)/n
, and A_i=G\bigl(T_{i-1}\big|\widehat{\Theta}\bigr)
, for i=1,\dots,m
.
Usage
goftype1(plan, param, mle, cdf.expression = FALSE, pdf.expression = TRUE, cdf, pdf
, lb = 0)
Arguments
plan |
Censoring plan for progressive type-I interval censoring scheme. It must be given as a |
param |
Vector of the of the family parameter's names. |
mle |
Vector of the estimated parameters. |
cdf.expression |
Logical. That is |
pdf.expression |
Logical. That is |
cdf |
Expression of the cumulative distribution function. |
pdf |
Expression of the probability density function. |
lb |
Lower bound of the family support. That is zero by default. |
Details
We note that for lifetime distributions whose support is the positive semi-axis, i.e., x>0
, the cumulative distribution function (cdf) may not be differentiable. In this case, the lower bound of the support of random variable, i.e., lb
that is zero by default, must be chosen some positive small value to ensure the differentiability of the cdf. Theoretically, for lifetime distribution, we have lb
=T_{0}=0
.
Value
A vector of goodness-of-fit measures consist of Anderson-Darling (AD
) and Cramer-von Misses (CVM
) statistics.
Author(s)
Mahdi Teimouri
References
M. Teimouri 2020. Bias corrected maximum likelihood estimators under progressive type-I interval censoring scheme, Communications in Statistics-Simulation and Computation, https://doi.org/10.10 80/03610918.2020.1819320.
Examples
data(plasma)
n <- 20
param <- c("alpha","beta")
mle <- c(0.4, 0.05)
cdf <- quote( 1-exp( beta*(1-exp( x^alpha )) ) )
pdf <- quote( exp( beta*(1-exp( x^alpha )) )*( beta*(exp( x^alpha )*(x^(alpha-1)*alpha) )) )
lb <- 0
plan <- rtype1(n = n, P = plasma$P, T = plasma$upper, param = param, mle = mle, cdf.expression
= FALSE, pdf.expression = TRUE, cdf = cdf, pdf = pdf, lb = lb)
goftype1(plan = plan, param = param, mle = mle, cdf.expression=TRUE, pdf.expression = FALSE, cdf =
cdf, pdf = pdf, lb = lb)