| bcapar {bcaboot} | R Documentation |
Compute parametric bootstrap confidence intervals
Description
bcapar computes parametric bootstrap confidence intervals for a real-valued parameter theta in a p-parameter exponential family. It is described in Section 4 of the reference below.
Usage
bcapar(
t0,
tt,
bb,
alpha = c(0.025, 0.05, 0.1, 0.16),
J = 10,
K = 6,
trun = 0.001,
pct = 0.333,
cd = 0,
func
)
Arguments
t0 |
Observed estimate of theta, usually by maximum likelihood. |
tt |
A vector of parametric bootstrap replications of theta of
length |
bb |
A |
alpha |
percentiles desired for the bca confidence limits. One
only needs to provide |
J, K |
Parameters controlling the jackknife estimates of Monte
Carlo error: |
trun |
Truncation parameter used in the calculation of the
acceleration |
pct |
Proportion of "nearby" b vectors used in the calculation
of |
cd |
If cd is 1 the bca confidence density is also returned; see Section 11.6 in reference Efron and Hastie (2016) below |
func |
Function |
Value
a named list of several items:
-
lims : Bca confidence limits (first column) and the standard limits (fourth column). Also the abc limits (fifth column) if
funcis provided. The second column,jacksd, are the jackknife estimates of Monte Carlo error;pct, the third column are the proportion of the replicatesttless than eachbcalimvalue -
stats : Estimates and their jackknife Monte Carlo errors:
theta=\hat{\theta};sd, the bootstrap standard deviation for\hat{\theta};athe acceleration estimate;azanother acceleration estimate that depends less on extreme values oftt;z0the bias-correction estimate;Athe big-A measure of raw acceleration;sdddelta method estimate for standard deviation of\hat{\theta};meanthe average oftt -
abcstats : The abc estimates of
aandz0, returned iffuncwas provided -
ustats : The bias-corrected estimator
2 * t0 - mean(tt).ustatsgivesustat, an estimatesduof its sampling error, and jackknife estimates of monte carlo error for bothustatandsdu. Also given isB, the number of bootstrap replications -
seed : The random number state for reproducibility
References
DiCiccio T and Efron B (1996). Bootstrap confidence intervals. Statistical Science 11, 189-228
T. DiCiccio and B. Efron. More accurate confidence intervals in exponential families. Biometrika (1992) p231-245.
Efron B (1987). Better bootstrap confidence intervals. JASA 82, 171-200
B. Efron and T. Hastie. Computer Age Statistical Inference. Cambridge University Press, 2016.
B. Efron and B. Narasimhan. Automatic Construction of Bootstrap Confidence Intervals, 2018.
Examples
data(diabetes, package = "bcaboot")
X <- diabetes$x
y <- scale(diabetes$y, center = TRUE, scale = FALSE)
lm.model <- lm(y ~ X - 1)
mu.hat <- lm.model$fitted.values
sigma.hat <- stats::sd(lm.model$residuals)
t0 <- summary(lm.model)$adj.r.squared
y.star <- sapply(mu.hat, rnorm, n = 1000, sd = sigma.hat)
tt <- apply(y.star, 1, function(y) summary(lm(y ~ X - 1))$adj.r.squared)
b.star <- y.star %*% X
set.seed(1234)
bcapar(t0 = t0, tt = tt, bb = b.star)