MetropolisHastings {bbricks} R Documentation

Metropolis-Hastings sampler

Description

sample xhat from the target distribution p(xhat), with given proposal distribution q(xhat|x), the acceptance rate is:
min( 1 , dp(xhat)/dp(x) * dq(x|xhat)dq(xhat|x) )
where dp() is the density function of the target distribution, dq() the the density function of the proposal distribution. A new sample xhat is drawn from the sampler of the proposal distribution rq(). See examples.

Usage

```MetropolisHastings(nsamples, xini, dp, dq, rq)
```

Arguments

 `nsamples` integer, number of samples to draw `xini` initial sample, the chain of samples starts from here. xini must be a matrix of one row, or a numeric vector that will be converted to a matrix of one row. `dp` function(x), the LOG density function of the target distribution log dp(x), DON'T FORGET THE LOG. `dq` function(xhat,x), the LOG density function of the proposal distribution log dq(xhat | x), DON'T FORGET THE LOG. `rq` function(x), the generator of the proposal distribution rq(xhat | x).

Value

a matrix of nsamples rows.

Examples

```

## example1: independent Metropolis-Hastings algorithm, get 5000 samples from Beta(2.7,6.3)
## with independent uniform proposal U(0,1), and independent normal proposal N(0.5,1).

## step1: define p() and q()
dp <- function(x) if(x>0&x<1) dbeta(x,2.7,6.3,log = TRUE) else -Inf
dq1 <- function(xnew,x) 0               #uniform proposal log density
dq2 <- function(xnew,x) dnorm(xnew,0.5,1) #normal proposal log density
rq1 <- function(x) runif(1,0,1)           #uniform proposal sampler
rq2 <- function(x) rnorm(1,0.5,1)         #normal proposal sampler
## step2: get 5000 samples, with two different proposals
X1 <- MetropolisHastings(nsamples = 5000,xini = runif(1,0,1),dp=dp,dq=dq1,rq=rq1)
X2 <- MetropolisHastings(nsamples = 5000,xini = runif(1,0,1),dp=dp,dq=dq2,rq=rq2)
## step3: plot the result, calculate acceptance rate
sum(diff(X1)!=0)/nrow(X1)                 #the acceptance rate of uniform proposal
sum(diff(X2)!=0)/nrow(X2)                 #the acceptance rate of normal proposal
## Clearly Uniform, compare to Normal, can better resemble Beta, so the acceptance rate is higher
## plot the results
hist(X1)
hist(X2)
hist(rbeta(5000,2.7,6.3))

## example2: independent Metropolis-Hastings algorithm, sample from an improper distribution
## p(x) = -|x|+1, where -1<x<1, with independent uniform proposal U(-1,1)

## step1: define p() and q()
dp <- function(x) log(-abs(x)+1)        #log dp
dq <- function(xnew,x) 1
rq <- function(x) runif(1,-1,1)         #make sure -1<x<1
## step2: get 5000 samples
X <- MetropolisHastings(nsamples = 5000,xini = runif(1,-1,1),dp=dp,dq=dq,rq=rq)
## step3: plot the result, calculate acceptance rate
hist(X)
sum(diff(X)!=0)/nrow(X)                 #the acceptance rate

## example3: random walk Metropolis-Hastings algorithm, sample from a
## normal mixture 0.2*N(1,1)+0.8*N(-5,1), with symmetric proposal xhat ~ U(x-l,x+l),
## compare different values of l.

## step1: define p() and q()
dp <- function(x) log(dnorm(x,1,1)*0.2+dnorm(x,-5,1)*0.8)
## a symmetric proposal has no influence to the acceptance rate, so a constant function
## would suffice.
dq <- function(xnew,x) 1
rq1 <- function(x) runif(1,x-0.01,x+0.01)
rq2 <- function(x) runif(1,x-2,x+2)
## step2: get 5000 samples
X1 <- MetropolisHastings(nsamples = 5000,xini = rnorm(1),dp=dp,dq=dq,rq=rq1)
X2 <- MetropolisHastings(nsamples = 50000,xini = rnorm(1),dp=dp,dq=dq,rq=rq2)
## step3: plot the result, calculate acceptance rate
sum(diff(X1)!=0)/nrow(X1)
sum(diff(X2)!=0)/nrow(X2)
## plot the results
hist(X1,xlim = c(-10,5))
hist(X2,xlim = c(-10,5))
hist(c(rnorm(1000,1,1),rnorm(4000,-5,1)),xlim = c(-10,5))

## note that X1 has a higher acceptance rate comparing to X2, though it performs poorer.
## So we use Kolmogorov-Smirnov to test the real performance of X1 and X2:
ks.test(jitter(X1),c(rnorm(1000,1,1),rnorm(4000,-5,1))) #ks.test() assumes continuous
## samples doesn't contain equal values, otherwise there will be a warning.so use jitter() to
## remove the equals
ks.test(jitter(X2),c(rnorm(1000,1,1),rnorm(4000,-5,1)))
## it turns out that even though X2 looks better from the histogram, it still doesn't
## pass the KS test.

## example4: hybrid Metropolis-Hastings algorithm, questions same as previous example,
## but use a mixutre proposal instead.

## we use mixture proposal to capture both the local and global areas of the target distribution
## step1: define p() and q()
dp <- function(x) log(dnorm(x,1,1)*0.2+dnorm(x,-5,1)*0.8)
## a symmetric proposal has no influence to the acceptance rate,
## so a constant function would suffice.
dq <- function(xnew,x) 1
##70% local, 30% global
rq <- function(x) if(runif(1)<0.7) runif(1,x-0.1,x+0.1) else runif(1,x-3,x+3)
## step2: get 5000 samples
X <- MetropolisHastings(nsamples = 5000,xini = rnorm(1),dp=dp,dq=dq,rq=rq)
## step3: plot the result, calculate acceptance rate
sum(diff(X)!=0)/nrow(X)
## plot the results
hist(X,xlim = c(-10,5))
hist(c(rnorm(1000,1,1),rnorm(4000,-5,1)),xlim = c(-10,5))

## perform the KS test again, this time it says there's no significance difference between the MH
## and the real samples. ks.test() assumes continuous samples doesn't contain equal values,
## otherwise there will be a warning.so use jitter() to remove the equals
ks.test(jitter(X),c(rnorm(1000,1,1),rnorm(4000,-5,1)))

```

[Package bbricks version 0.1.4 Index]