| mlr_terminators_evals {bbotk} | R Documentation |
Terminator that stops after a number of evaluations
Description
Class to terminate the optimization depending on the number of evaluations.
An evaluation is defined by one resampling of a parameter value.
The total number of evaluations B is defined as
B = \mathtt{n\_evals} + \mathtt{k} * D
where D is the dimension of the search space.
Dictionary
This Terminator can be instantiated via the
dictionary mlr_terminators or with the associated
sugar function trm():
mlr_terminators$get("evals")
trm("evals")
Parameters
n_evalsinteger(1)
See formula above. Default is 100.kinteger(1)
See formula above. Default is 0.
Super class
bbotk::Terminator -> TerminatorEvals
Methods
Public methods
Inherited methods
Method new()
Creates a new instance of this R6 class.
Usage
TerminatorEvals$new()
Method is_terminated()
Is TRUE iff the termination criterion is positive, and FALSE
otherwise.
Usage
TerminatorEvals$is_terminated(archive)
Arguments
archive(Archive).
Returns
logical(1).
Method clone()
The objects of this class are cloneable with this method.
Usage
TerminatorEvals$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
See Also
Other Terminator:
Terminator,
mlr_terminators,
mlr_terminators_clock_time,
mlr_terminators_combo,
mlr_terminators_none,
mlr_terminators_perf_reached,
mlr_terminators_run_time,
mlr_terminators_stagnation,
mlr_terminators_stagnation_batch
Examples
TerminatorEvals$new()
# 5 evaluations in total
trm("evals", n_evals = 5)
# 3 * [dimension of search space] evaluations in total
trm("evals", n_evals = 0, k = 3)
# (3 * [dimension of search space] + 1) evaluations in total
trm("evals", n_evals = 1, k = 3)