bb_optimize {bbotk} | R Documentation |
Black-Box Optimization
Description
This function optimizes a function or Objective with a given method.
Usage
bb_optimize(
x,
method = "random_search",
max_evals = 1000,
max_time = NULL,
...
)
## S3 method for class ''function''
bb_optimize(
x,
method = "random_search",
max_evals = 1000,
max_time = NULL,
lower = NULL,
upper = NULL,
maximize = FALSE,
...
)
## S3 method for class 'Objective'
bb_optimize(
x,
method = "random_search",
max_evals = 1000,
max_time = NULL,
search_space = NULL,
...
)
Arguments
x |
( |
method |
( |
max_evals |
( |
max_time |
( |
... |
(named |
lower |
( |
upper |
( |
maximize |
( |
search_space |
Value
list
of
-
"par"
- Best found parameters -
"value"
- Optimal outcome -
"instance"
- OptimInstanceBatchSingleCrit | OptimInstanceBatchMultiCrit
Note
If both max_evals
and max_time
are NULL
, TerminatorNone is used. This
is useful if the Optimizer can terminate itself. If both are given,
TerminatorCombo is created and the optimization stops if the time or
evaluation budget is exhausted.
Examples
# function and bounds
fun = function(xs) {
-(xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10
}
bb_optimize(fun, lower = c(-10, -5), upper = c(10, 5), max_evals = 10)
# function and constant
fun = function(xs, c) {
-(xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + c
}
bb_optimize(fun, lower = c(-10, -5), upper = c(10, 5), max_evals = 10, c = 1)
# objective
fun = function(xs) {
c(z = -(xs[[1]] - 2)^2 - (xs[[2]] + 3)^2 + 10)
}
# define domain and codomain using a `ParamSet` from paradox
domain = ps(x1 = p_dbl(-10, 10), x2 = p_dbl(-5, 5))
codomain = ps(z = p_dbl(tags = "minimize"))
objective = ObjectiveRFun$new(fun, domain, codomain)
bb_optimize(objective, method = "random_search", max_evals = 10)