bayes_ammi {baystability} | R Documentation |
Bayesian Estimation of Genotype by Environment Interaction Model
Description
Bayesian estimation method of linear–bilinear models for Genotype by Environment Interaction Model
Usage
## Default S3 method:
bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)
Arguments
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.rep |
Replication Factor |
.nIter |
Number of Iterations |
Value
Genotype by Environment Interaction Model
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Diego Jarquin (diego.jarquin@gmail.com)
Sergio Perez-Elizalde (sergiop@colpos.mx)
Juan Burgueño (j.burgueno@cgiar.org)
Jose Crossa (j.crossa@cgiar.org)
References
Perez-Elizalde, S., Jarquin, D., and Crossa, J. (2011) A General Bayesian Estimation Method of Linear–Bilinear Models Applied to Plant Breeding Trials With Genotype × Environment Interaction. Journal of Agricultural, Biological, and Environmental Statistics, 17, 15–37. (doi:10.1007/s13253-011-0063-9)
Examples
data(cultivo2008)
fm1 <-
ge_ammi(
.data = cultivo2008
, .y = y
, .gen = entry
, .env = site
, .rep = rep
)
r0 <- fm1$g
c0 <- fm1$e
n0 <- fm1$Rep
k0 <- fm1$k
mu0 <- fm1$mu
sigma20 <- fm1$sigma2
tau0 <- fm1$tau
tao0 <- fm1$tao
delta0 <- fm1$delta
lambdas0 <- fm1$lambdas
alphas0 <- fm1$alphas
gammas0 <- fm1$gammas
ge_means0 <- fm1$ge_means$ge_means
data(cultivo2008)
fm2 <-
ge_ammi(
.data = cultivo2009
, .y = y
, .gen = entry
, .env = site
, .rep = rep
)
k <- fm2$k
alphasa <- fm2$alphas
gammasa <- fm2$gammas
alphas1 <- tibble::as_tibble(fm2$alphas)
gammas1 <- tibble::as_tibble(fm2$gammas)
# Biplots OLS
library(ggplot2)
BiplotOLS1 <-
ggplot(data = alphas1, mapping = aes(x = V1, y = V2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(alphas1)), vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(alphas1[, 1:2]))))
, max(abs(c(range(alphas1[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(alphas1[, 1:2]))))
, max(abs(c(range(alphas1[, 1:2])))))) +
labs(title = "OLS", x = expression(u[1]), y = expression(u[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotOLS1)
BiplotOLS2 <-
ggplot(data = gammas1, mapping = aes(x = V1, y = V2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(gammas1)), vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(gammas1[, 1:2]))))
, max(abs(c(range(gammas1[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(gammas1[, 1:2]))))
, max(abs(c(range(gammas1[, 1:2])))))) +
labs(title = "OLS", x = expression(v[1]), y = expression(v[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotOLS2)
BiplotOLS3 <-
ggplot(data = alphas1, mapping = aes(x = V1, y = V2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(alphas1)), vjust = "inward", hjust = "inward") +
geom_point(data = gammas1, mapping = aes(x = V1, y = V2)) +
geom_segment(data = gammas1, aes(x = 0, y = 0, xend = V1, yend = V2),
arrow = arrow(length = unit(0.2, "cm")), alpha = 0.75, color = "red") +
geom_text(data = gammas1,
aes(x = V1, y = V2, label = paste0("E", 1:nrow(gammasa)))
, vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2]))))
, max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2]))))
, max(abs(c(range(alphas1[, 1:2], gammas1[, 1:2])))))) +
labs(title = "OLS", x = expression(PC[1]), y = expression(PC[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotOLS3)
fm3 <-
bayes_ammi(
.data = cultivo2009
, .y = y
, .gen = entry
, .env = site
, .rep = rep
, .nIter = 200
)
Mean_Alphas <- tibble::as_tibble(matrix(colMeans(fm3$alphas1), ncol = 11))
Mean_Gammas <- tibble::as_tibble(matrix(colMeans(fm3$gammas1), ncol = 11))
# Biplots Bayesian
BiplotBayes1 <-
ggplot(data = Mean_Alphas, mapping = aes(x = V1, y = V2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(Mean_Alphas)),
vjust = "inward"
, hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(Mean_Alphas[, 1:2]))))
, max(abs(c(range(Mean_Alphas[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(Mean_Alphas[, 1:2]))))
, max(abs(c(range(Mean_Alphas[, 1:2])))))) +
labs(title = "Bayes", x = expression(u[1]), y = expression(u[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayes1)
BiplotBayes2 <-
ggplot(data = Mean_Gammas, mapping = aes(x = V1, y = V2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(Mean_Gammas)), vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(Mean_Gammas[, 1:2]))))
, max(abs(c(range(Mean_Gammas[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(Mean_Gammas[, 1:2]))))
, max(abs(c(range(Mean_Gammas[, 1:2])))))) +
labs(title = "Bayes", x = expression(v[1]), y = expression(v[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayes2)
BiplotBayes3 <-
ggplot(data = Mean_Alphas, mapping = aes(x = V1, y = V2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(Mean_Alphas)),
vjust = "inward", hjust = "inward") +
geom_point(data = Mean_Gammas, mapping = aes(x = V1, y = V2)) +
geom_segment(data = Mean_Gammas,
aes(x = 0, y = 0, xend = V1, yend = V2),
arrow = arrow(length = unit(0.2, "cm"))
, alpha = 0.75, color = "red") +
geom_text(data = Mean_Gammas,
aes(x = V1, y = V2,
label = paste0("E", 1:nrow(Mean_Gammas))),
vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2]))))
, max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2]))))
, max(abs(c(range(Mean_Alphas[, 1:2], Mean_Gammas[, 1:2])))))) +
labs(title = "Bayes", x = expression(PC[1]), y = expression(PC[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayes3)
[Package baystability version 0.1.0 Index]