logitll {bayess} | R Documentation |
Log-likelihood of the logit model
Description
Direct computation of the logarithm of the likelihood of a standard logit model (Chapter 4)
P(y=1|X,\beta)=
\{1+\exp(-\beta^{T}X)\}^{-1}.
Usage
logitll(beta, y, X)
Arguments
beta |
coefficient of the logit model |
y |
vector of binary response variables |
X |
covariate matrix |
Value
returns the logarithm of the logit likelihood for the data y
,
covariate matrix X
and parameter vector beta
See Also
Examples
data(bank)
y=bank[,5]
X=as.matrix(bank[,-5])
logitll(runif(4),y,X)
[Package bayess version 1.6 Index]