hmnoinflogit {bayess} | R Documentation |
Metropolis-Hastings for the logit model under a noninformative prior
Description
This function runs a Metropolis-Hastings algorithm that produces a sample from the
posterior distribution for the logit model (Chapter 4) coefficient \beta
associated with a noninformative prior defined in the book.
Usage
hmnoinflogit(niter, y, X, scale)
Arguments
niter |
number of iterations |
y |
binary response variable |
X |
matrix of covariates with the same number of rows as |
scale |
scale of the random walk |
Value
sample of \beta
's as a matrix of size niter
x p, where p is the number
of covariates
See Also
Examples
data(bank)
bank=as.matrix(bank)
y=bank[,5]
X=bank[,1:4]
noinflogit=hmnoinflogit(1000,y,X,1)
par(mfrow=c(1,3),mar=1+c(1.5,1.5,1.5,1.5))
plot(noinflogit[,1],type="l",xlab="Iterations",ylab=expression(beta[1]))
hist(noinflogit[101:1000,1],nclass=50,prob=TRUE,main="",xlab=expression(beta[1]))
acf(noinflogit[101:1000,1],lag=10,main="",ylab="Autocorrelation",ci=FALSE)
[Package bayess version 1.6 Index]