hmflatlogit {bayess} | R Documentation |
Metropolis-Hastings for the logit model under a flat prior
Description
Under the assumption that the posterior distribution is well-defined,
this Metropolis-Hastings algorithm produces a sample from the
posterior distribution on the logit model coefficient \beta
under a flat prior.
Usage
hmflatlogit(niter, y, X, scale)
Arguments
niter |
number of iterations |
y |
binary response variable |
X |
matrix of covariates with the same number of rows as |
scale |
scale of the Metropolis-Hastings random walk |
Value
The function produces a sample of \beta
's as a matrix of size niter
x p
,
where p
is the number of covariates.
See Also
Examples
data(bank)
bank=as.matrix(bank)
y=bank[,5]
X=bank[,1:4]
flatlogit=hmflatlogit(1000,y,X,1)
par(mfrow=c(1,3),mar=1+c(1.5,1.5,1.5,1.5))
plot(flatlogit[,1],type="l",xlab="Iterations",ylab=expression(beta[1]))
hist(flatlogit[101:1000,1],nclass=50,prob=TRUE,main="",xlab=expression(beta[1]))
acf(flatlogit[101:1000,1],lag=10,main="",ylab="Autocorrelation",ci=FALSE)
[Package bayess version 1.6 Index]