runiregGibbs {bayesm} | R Documentation |
Gibbs Sampler for Univariate Regression
Description
runiregGibbs
implements a Gibbs Sampler to draw from posterior of a univariate regression with a conditionally conjugate prior.
Usage
runiregGibbs(Data, Prior, Mcmc)
Arguments
Data |
list(y, X) |
Prior |
list(betabar, A, nu, ssq) |
Mcmc |
list(sigmasq, R, keep, nprint) |
Details
Model and Priors
y = X\beta + e
with e
\sim
N(0, \sigma^2)
\beta
\sim
N(betabar, A^{-1})
\sigma^2
\sim
(nu*ssq)/\chi^2_{nu}
Argument Details
Data = list(y, X)
y: | n x 1 vector of observations |
X: | n x k design matrix
|
Prior = list(betabar, A, nu, ssq)
[optional]
betabar: | k x 1 prior mean (def: 0) |
A: | k x k prior precision matrix (def: 0.01*I) |
nu: | d.f. parameter for Inverted Chi-square prior (def: 3) |
ssq: | scale parameter for Inverted Chi-square prior (def: var(y) )
|
Mcmc = list(sigmasq, R, keep, nprint)
[only R
required]
sigmasq: | value for \sigma^2 for first Gibbs sampler draw of \beta |\sigma^2 |
R: | number of MCMC draws |
keep: | MCMC thinning parameter -- keep every keep th draw (def: 1) |
nprint: | print the estimated time remaining for every nprint 'th draw (def: 100, set to 0 for no print)
|
Value
A list containing:
betadraw |
|
sigmasqdraw |
|
Author(s)
Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.
References
For further discussion, see Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
See Also
Examples
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=1000} else {R=10}
set.seed(66)
n = 200
X = cbind(rep(1,n), runif(n))
beta = c(1,2)
sigsq = 0.25
y = X%*%beta + rnorm(n,sd=sqrt(sigsq))
out = runiregGibbs(Data=list(y=y, X=X), Mcmc=list(R=R))
cat("Summary of beta and Sigmasq draws", fill=TRUE)
summary(out$betadraw, tvalues=beta)
summary(out$sigmasqdraw, tvalues=sigsq)
## plotting examples
if(0){plot(out$betadraw)}
[Package bayesm version 3.1-6 Index]