rivGibbs {bayesm} | R Documentation |
Gibbs Sampler for Linear "IV" Model
Description
rivGibbs
is a Gibbs Sampler for a linear structural equation with an arbitrary number of instruments.
Usage
rivGibbs(Data, Prior, Mcmc)
Arguments
Data |
list(y, x, w, z) |
Prior |
list(md, Ad, mbg, Abg, nu, V) |
Mcmc |
list(R, keep, nprint) |
Details
Model and Priors
x = z'\delta + e1
y = \beta*x + w'\gamma + e2
e1,e2
\sim
N(0, \Sigma)
Note: if intercepts are desired in either equation, include vector of ones in z
or w
\delta
\sim
N(md, Ad^{-1})
vec(\beta,\gamma)
\sim
N(mbg, Abg^{-1})
\Sigma
\sim
IW(nu, V)
Argument Details
Data = list(y, x, w, z)
y: | n x 1 vector of obs on LHS variable in structural equation |
x: | n x 1 vector of obs on "endogenous" variable in structural equation |
w: | n x j matrix of obs on "exogenous" variables in the structural equation |
z: | n x p matrix of obs on instruments
|
Prior = list(md, Ad, mbg, Abg, nu, V)
[optional]
md: | p -length prior mean of delta (def: 0) |
Ad: | p x p PDS prior precision matrix for prior on delta (def: 0.01*I) |
mbg: | (j+1) -length prior mean vector for prior on beta,gamma (def: 0) |
Abg: | (j+1)x(j+1) PDS prior precision matrix for prior on beta,gamma (def: 0.01*I) |
nu: | d.f. parameter for Inverted Wishart prior on Sigma (def: 5) |
V: | 2 x 2 location matrix for Inverted Wishart prior on Sigma (def: nu*I)
|
Mcmc = list(R, keep, nprint)
[only R
required]
R: | number of MCMC draws |
keep: | MCMC thinning parameter: keep every keep th draw (def: 1) |
nprint: | print the estimated time remaining for every nprint 'th draw (def: 100, set to 0 for no print)
|
Value
A list containing:
deltadraw |
|
betadraw |
|
gammadraw |
|
Sigmadraw |
|
Author(s)
Rob McCulloch and Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.
References
For further discussion, see Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
Examples
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)
simIV = function(delta, beta, Sigma, n, z, w, gamma) {
eps = matrix(rnorm(2*n),ncol=2) %*% chol(Sigma)
x = z%*%delta + eps[,1]
y = beta*x + eps[,2] + w%*%gamma
list(x=as.vector(x), y=as.vector(y))
}
n = 200
p=1 # number of instruments
z = cbind(rep(1,n), matrix(runif(n*p),ncol=p))
w = matrix(1,n,1)
rho = 0.8
Sigma = matrix(c(1,rho,rho,1), ncol=2)
delta = c(1,4)
beta = 0.5
gamma = c(1)
simiv = simIV(delta, beta, Sigma, n, z, w, gamma)
Data1 = list(); Data1$z = z; Data1$w=w; Data1$x=simiv$x; Data1$y=simiv$y
Mcmc1=list(); Mcmc1$R = R; Mcmc1$keep=1
out = rivGibbs(Data=Data1, Mcmc=Mcmc1)
cat("Summary of Beta draws", fill=TRUE)
summary(out$betadraw, tvalues=beta)
cat("Summary of Sigma draws", fill=TRUE)
summary(out$Sigmadraw, tvalues=as.vector(Sigma[upper.tri(Sigma,diag=TRUE)]))
## plotting examples
if(0){plot(out$betadraw)}