rhierLinearModel {bayesm} R Documentation

## Gibbs Sampler for Hierarchical Linear Model with Normal Heterogeneity

### Description

rhierLinearModel implements a Gibbs Sampler for hierarchical linear models with a normal prior.

### Usage

rhierLinearModel(Data, Prior, Mcmc)

### Arguments

 Data list(regdata, Z) Prior list(Deltabar, A, nu.e, ssq, nu, V) Mcmc list(R, keep, nprint)

### Details

#### Model and Priors

nreg regression equations with nvar X variables in each equation
y_i = X_i\beta_i + e_i with e_i \sim N(0, \tau_i)

\tau_i \sim nu.e*ssq_i/\chi^2_{nu.e} where \tau_i is the variance of e_i
\beta_i \sim N(Z\Delta[i,], V_{\beta})
Note: Z\Delta is the matrix Z * \Delta and [i,] refers to ith row of this product

vec(\Delta) given V_{\beta} \sim N(vec(Deltabar), V_{\beta}(x) A^{-1})
V_{\beta} \sim IW(nu,V)
Delta, Deltabar are nz x nvar; A is nz x nz; V_{\beta} is nvar x nvar.

Note: if you don't have any Z variables, omit Z in the Data argument and a vector of ones will be inserted; the matrix \Delta will be 1 x nvar and should be interpreted as the mean of all unit \betas.

#### Argument Details

Data = list(regdata, Z) [Z optional]

 regdata:  list of lists with X and y matrices for each of nreg=length(regdata) regressions regdata[[i]]$X:  n_i x nvar design matrix for equation i regdata[[i]]$y:  n_i x 1 vector of observations for equation i Z:  nreg x nz matrix of unit characteristics (def: vector of ones)

Prior = list(Deltabar, A, nu.e, ssq, nu, V) [optional]

 Deltabar:  nz x nvar matrix of prior means (def: 0) A:  nz x nz matrix for prior precision (def: 0.01I) nu.e:  d.f. parameter for regression error variance prior (def: 3) ssq:  scale parameter for regression error var prior (def: var(y_i)) nu:  d.f. parameter for Vbeta prior (def: nvar+3) V:  Scale location matrix for Vbeta prior (def: nu*I)

Mcmc = list(R, keep, nprint) [only R required]

 R:  number of MCMC draws keep:  MCMC thinning parm -- keep every keepth draw (def: 1) nprint:  print the estimated time remaining for every nprint'th draw (def: 100, set to 0 for no print)

### Value

A list containing:

 betadraw nreg x nvar x R/keep array of individual regression coef draws taudraw R/keep x nreg matrix of error variance draws Deltadraw R/keep x nz*nvar matrix of Deltadraws Vbetadraw R/keep x nvar*nvar matrix of Vbeta draws

### Author(s)

Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.

### References

For further discussion, see Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.

rhierLinearMixture

### Examples

if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)

nreg = 100
nobs = 100
nvar = 3
Vbeta = matrix(c(1, 0.5, 0, 0.5, 2, 0.7, 0, 0.7, 1), ncol=3)

Z = cbind(c(rep(1,nreg)), 3*runif(nreg))
Z[,2] = Z[,2] - mean(Z[,2])
nz = ncol(Z)
Delta = matrix(c(1,-1,2,0,1,0), ncol=2)
Delta = t(Delta) # first row of Delta is means of betas
Beta = matrix(rnorm(nreg*nvar),nrow=nreg)%*%chol(Vbeta) + Z%*%Delta

tau = 0.1
iota = c(rep(1,nobs))
regdata = NULL
for (reg in 1:nreg) {
X = cbind(iota, matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
y = X%*%Beta[reg,] + sqrt(tau)*rnorm(nobs)
regdata[[reg]] = list(y=y, X=X)
}

Data1 = list(regdata=regdata, Z=Z)
Mcmc1 = list(R=R, keep=1)

out = rhierLinearModel(Data=Data1, Mcmc=Mcmc1)

cat("Summary of Delta draws", fill=TRUE)
summary(out$Deltadraw, tvalues=as.vector(Delta)) cat("Summary of Vbeta draws", fill=TRUE) summary(out$Vbetadraw, tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))

## plotting examples
if(0){
plot(out$betadraw) plot(out$Deltadraw)
}


[Package bayesm version 3.1-6 Index]