rhierLinearModel {bayesm} | R Documentation |
Gibbs Sampler for Hierarchical Linear Model with Normal Heterogeneity
Description
rhierLinearModel
implements a Gibbs Sampler for hierarchical linear models with a normal prior.
Usage
rhierLinearModel(Data, Prior, Mcmc)
Arguments
Data |
list(regdata, Z) |
Prior |
list(Deltabar, A, nu.e, ssq, nu, V) |
Mcmc |
list(R, keep, nprint) |
Details
Model and Priors
nreg
regression equations with nvar
X
variables in each equation
y_i = X_i\beta_i + e_i
with e_i
\sim
N(0, \tau_i)
\tau_i
\sim
nu.e*ssq_i/\chi^2_{nu.e}
where \tau_i
is the variance of e_i
\beta_i
\sim
N(Z\Delta
[i,], V_{\beta}
)
Note: Z\Delta
is the matrix Z * \Delta
and [i,] refers to i
th row of this product
vec(\Delta)
given V_{\beta}
\sim
N(vec(Deltabar), V_{\beta}(x) A^{-1})
V_{\beta}
\sim
IW(nu,V)
Delta, Deltabar
are nz x nvar
; A
is nz x nz
; V_{\beta}
is nvar x nvar
.
Note: if you don't have any Z
variables, omit Z
in the Data
argument and
a vector of ones will be inserted; the matrix \Delta
will be 1 x nvar
and should
be interpreted as the mean of all unit \beta
s.
Argument Details
Data = list(regdata, Z)
[Z
optional]
regdata: | list of lists with X and y matrices for each of nreg=length(regdata) regressions |
regdata[[i]]$X: | n_i x nvar design matrix for equation i |
regdata[[i]]$y: | n_i x 1 vector of observations for equation i |
Z: | nreg x nz matrix of unit characteristics (def: vector of ones)
|
Prior = list(Deltabar, A, nu.e, ssq, nu, V)
[optional]
Deltabar: | nz x nvar matrix of prior means (def: 0) |
A: | nz x nz matrix for prior precision (def: 0.01I) |
nu.e: | d.f. parameter for regression error variance prior (def: 3) |
ssq: | scale parameter for regression error var prior (def: var(y_i) ) |
nu: | d.f. parameter for Vbeta prior (def: nvar+3) |
V: | Scale location matrix for Vbeta prior (def: nu*I) |
Mcmc = list(R, keep, nprint)
[only R
required]
R: | number of MCMC draws |
keep: | MCMC thinning parm -- keep every keep th draw (def: 1) |
nprint: | print the estimated time remaining for every nprint 'th draw (def: 100, set to 0 for no print)
|
Value
A list containing:
betadraw |
|
taudraw |
|
Deltadraw |
|
Vbetadraw |
|
Author(s)
Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.
References
For further discussion, see Chapter 3, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
See Also
Examples
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=2000} else {R=10}
set.seed(66)
nreg = 100
nobs = 100
nvar = 3
Vbeta = matrix(c(1, 0.5, 0, 0.5, 2, 0.7, 0, 0.7, 1), ncol=3)
Z = cbind(c(rep(1,nreg)), 3*runif(nreg))
Z[,2] = Z[,2] - mean(Z[,2])
nz = ncol(Z)
Delta = matrix(c(1,-1,2,0,1,0), ncol=2)
Delta = t(Delta) # first row of Delta is means of betas
Beta = matrix(rnorm(nreg*nvar),nrow=nreg)%*%chol(Vbeta) + Z%*%Delta
tau = 0.1
iota = c(rep(1,nobs))
regdata = NULL
for (reg in 1:nreg) {
X = cbind(iota, matrix(runif(nobs*(nvar-1)),ncol=(nvar-1)))
y = X%*%Beta[reg,] + sqrt(tau)*rnorm(nobs)
regdata[[reg]] = list(y=y, X=X)
}
Data1 = list(regdata=regdata, Z=Z)
Mcmc1 = list(R=R, keep=1)
out = rhierLinearModel(Data=Data1, Mcmc=Mcmc1)
cat("Summary of Delta draws", fill=TRUE)
summary(out$Deltadraw, tvalues=as.vector(Delta))
cat("Summary of Vbeta draws", fill=TRUE)
summary(out$Vbetadraw, tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
## plotting examples
if(0){
plot(out$betadraw)
plot(out$Deltadraw)
}