rhierBinLogit {bayesm} | R Documentation |
MCMC Algorithm for Hierarchical Binary Logit
Description
This function has been deprecated. Please use rhierMnlRwMixture
instead.
rhierBinLogit
implements an MCMC algorithm for hierarchical binary logits with a normal heterogeneity distribution. This is a hybrid sampler with a RW Metropolis step for unit-level logit parameters.
rhierBinLogit
is designed for use on choice-based conjoint data with partial profiles. The Design matrix is based on differences of characteristics between two alternatives. See Appendix A of Bayesian Statistics and Marketing for details.
Usage
rhierBinLogit(Data, Prior, Mcmc)
Arguments
Data |
list(lgtdata, Z) |
Prior |
list(Deltabar, ADelta, nu, V) |
Mcmc |
list(R, keep, sbeta) |
Details
Model and Priors
y_{hi} = 1
with Pr = exp(x_{hi}'\beta_h) / (1+exp(x_{hi}'\beta_h)
and \beta_h
is nvar x 1
h = 1, \ldots, length(lgtdata)
units (or "respondents" for survey data)
\beta_h
= ZDelta[h,] + u_h
Note: here ZDelta refers to Z%*%Delta
with ZDelta[h,] the h
th row of this product
Delta is an nz x nvar
array
u_h
\sim
N(0, V_{beta})
.
delta = vec(Delta)
\sim
N(vec(Deltabar), V_{beta}(x) ADelta^{-1})
V_{beta}
\sim
IW(nu, V)
Argument Details
Data = list(lgtdata, Z)
[Z
optional]
lgtdata: | list of lists with each cross-section unit MNL data |
lgtdata[[h]]$y: | n_h x 1 vector of binary outcomes (0,1) |
lgtdata[[h]]$X: | n_h x nvar design matrix for h'th unit |
Z: | nreg x nz mat of unit chars (def: vector of ones)
|
Prior = list(Deltabar, ADelta, nu, V)
[optional]
Deltabar: | nz x nvar matrix of prior means (def: 0) |
ADelta: | prior precision matrix (def: 0.01I) |
nu: | d.f. parameter for IW prior on normal component Sigma (def: nvar+3) |
V: | pds location parm for IW prior on normal component Sigma (def: nuI) |
Mcmc = list(R, keep, sbeta)
[only R
required]
R: | number of MCMC draws |
keep: | MCMC thinning parm -- keep every keep th draw (def: 1) |
sbeta: | scaling parm for RW Metropolis (def: 0.2) |
Value
A list containing:
Deltadraw |
|
betadraw |
|
Vbetadraw |
|
llike |
|
reject |
|
Note
Some experimentation with the Metropolis scaling paramter (sbeta
) may be required.
Author(s)
Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.
References
For further discussion, see Chapter 5, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
See Also
Examples
if(nchar(Sys.getenv("LONG_TEST")) != 0) {R=10000} else {R=10}
set.seed(66)
nvar = 5 ## number of coefficients
nlgt = 1000 ## number of cross-sectional units
nobs = 10 ## number of observations per unit
nz = 2 ## number of regressors in mixing distribution
Z = matrix(c(rep(1,nlgt),runif(nlgt,min=-1,max=1)), nrow=nlgt, ncol=nz)
Delta = matrix(c(-2, -1, 0, 1, 2, -1, 1, -0.5, 0.5, 0), nrow=nz, ncol=nvar)
iota = matrix(1, nrow=nvar, ncol=1)
Vbeta = diag(nvar) + 0.5*iota%*%t(iota)
lgtdata=NULL
for (i in 1:nlgt) {
beta = t(Delta)%*%Z[i,] + as.vector(t(chol(Vbeta))%*%rnorm(nvar))
X = matrix(runif(nobs*nvar), nrow=nobs, ncol=nvar)
prob = exp(X%*%beta) / (1+exp(X%*%beta))
unif = runif(nobs, 0, 1)
y = ifelse(unif<prob, 1, 0)
lgtdata[[i]] = list(y=y, X=X, beta=beta)
}
Data1 = list(lgtdata=lgtdata, Z=Z)
Mcmc1 = list(R=R)
out = rhierBinLogit(Data=Data1, Mcmc=Mcmc1)
cat("Summary of Delta draws", fill=TRUE)
summary(out$Deltadraw, tvalues=as.vector(Delta))
cat("Summary of Vbeta draws", fill=TRUE)
summary(out$Vbetadraw, tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
if(0){
## plotting examples
plot(out$Deltadraw,tvalues=as.vector(Delta))
plot(out$betadraw)
plot(out$Vbetadraw,tvalues=as.vector(Vbeta[upper.tri(Vbeta,diag=TRUE)]))
}