rbayesBLP {bayesm} | R Documentation |
Bayesian Analysis of Random Coefficient Logit Models Using Aggregate Data
Description
rbayesBLP
implements a hybrid MCMC algorithm for aggregate level sales data in a market with differentiated products. bayesm version 3.1-0 and prior verions contain an error when using instruments with this function; this will be fixed in a future version.
Usage
rbayesBLP(Data, Prior, Mcmc)
Arguments
Data |
list(X, share, J, Z) |
Prior |
list(sigmasqR, theta_hat, A, deltabar, Ad, nu0, s0_sq, VOmega) |
Mcmc |
list(R, keep, nprint, H, initial_theta_bar, initial_r, initial_tau_sq, initial_Omega, initial_delta, s, cand_cov, tol) |
Value
A list containing:
thetabardraw |
|
Sigmadraw |
|
rdraw |
|
tausqdraw |
|
Omegadraw |
|
deltadraw |
|
acceptrate |
scalor of acceptance rate of Metropolis-Hasting |
s |
scale parameter used for Metropolis-Hasting |
cand_cov |
var-cov matrix used for Metropolis-Hasting |
Argument Details
Data = list(X, share, J, Z)
[Z
optional]
J: | number of alternatives, excluding an outside option |
X: | J*T x K matrix (no outside option, which is normalized to 0). |
If IV is used, the last column of X is the endogeneous variable. |
|
share: | J*T vector (no outside option). |
Note that both the share vector and the X matrix are organized by the jt index. |
|
j varies faster than t , i.e. (j=1,t=1), (j=2,t=1), ..., (j=J,T=1), ..., (j=J,t=T) |
|
Z: | J*T x I matrix of instrumental variables (optional)
|
Prior = list(sigmasqR, theta_hat, A, deltabar, Ad, nu0, s0_sq, VOmega)
[optional]
sigmasqR: | K*(K+1)/2 vector for r prior variance (def: diffuse prior for \Sigma ) |
theta_hat: | K vector for \theta_bar prior mean (def: 0 vector) |
A: | K x K matrix for \theta_bar prior precision (def: 0.01*diag(K) ) |
deltabar: | I vector for \delta prior mean (def: 0 vector) |
Ad: | I x I matrix for \delta prior precision (def: 0.01*diag(I) ) |
nu0: | d.f. parameter for \tau_sq and \Omega prior (def: K+1) |
s0_sq: | scale parameter for \tau_sq prior (def: 1) |
VOmega: | 2 x 2 matrix parameter for \Omega prior (def: matrix(c(1,0.5,0.5,1),2,2) )
|
Mcmc = list(R, keep, nprint, H, initial_theta_bar, initial_r, initial_tau_sq, initial_Omega, initial_delta, s, cand_cov, tol)
[only R
and H
required]
R: | number of MCMC draws |
keep: | MCMC thinning parameter -- keep every keep th draw (def: 1) |
nprint: | print the estimated time remaining for every nprint 'th draw (def: 100, set to 0 for no print) |
H: | number of random draws used for Monte-Carlo integration |
initial_theta_bar: | initial value of \theta_bar (def: 0 vector) |
initial_r: | initial value of r (def: 0 vector) |
initial_tau_sq: | initial value of \tau_sq (def: 0.1) |
initial_Omega: | initial value of \Omega (def: diag(2) ) |
initial_delta: | initial value of \delta (def: 0 vector) |
s: | scale parameter of Metropolis-Hasting increment (def: automatically tuned) |
cand_cov: | var-cov matrix of Metropolis-Hasting increment (def: automatically tuned) |
tol: | convergence tolerance for the contraction mapping (def: 1e-6) |
Model Details
Model and Priors (without IV):
u_ijt = X_jt \theta_i + \eta_jt + e_ijt
e_ijt
\sim
type I Extreme Value (logit)
\theta_i
\sim
N(\theta_bar, \Sigma)
\eta_jt
\sim
N(0, \tau_sq)
This structure implies a logit model for each consumer (\theta
).
Aggregate shares (share
) are produced by integrating this consumer level
logit model over the assumed normal distribution of \theta
.
r
\sim
N(0, diag(sigmasqR))
\theta_bar
\sim
N(\theta_hat, A^-1)
\tau_sq
\sim
nu0*s0_sq / \chi^2 (nu0)
Note: we observe the aggregate level market share, not individual level choices.
Note: r
is the vector of nonzero elements of cholesky root of \Sigma
.
Instead of \Sigma
we draw r
, which is one-to-one correspondence with the positive-definite \Sigma
.
Model and Priors (with IV):
u_ijt = X_jt \theta_i + \eta_jt + e_ijt
e_ijt
\sim
type I Extreme Value (logit)
\theta_i
\sim
N(\theta_bar, \Sigma)
X_jt = [X_exo_jt, X_endo_jt]
X_endo_jt = Z_jt \delta_jt + \zeta_jt
vec(\zeta_jt, \eta_jt)
\sim
N(0, \Omega)
r
\sim
N(0, diag(sigmasqR))
\theta_bar
\sim
N(\theta_hat, A^-1)
\delta
\sim
N(deltabar, Ad^-1)
\Omega
\sim
IW(nu0, VOmega)
MCMC and Tuning Details:
MCMC Algorithm:
Step 1 (\Sigma
):
Given \theta_bar
and \tau_sq
, draw r
via Metropolis-Hasting.
Covert the drawn r
to \Sigma
.
Note: if user does not specify the Metropolis-Hasting increment parameters
(s
and cand_cov
), rbayesBLP
automatically tunes the parameters.
Step 2 without IV (\theta_bar
, \tau_sq
):
Given \Sigma
, draw \theta_bar
and \tau_sq
via Gibbs sampler.
Step 2 with IV (\theta_bar
, \delta
, \Omega
):
Given \Sigma
, draw \theta_bar
, \delta
, and \Omega
via IV Gibbs sampler.
Tuning Metropolis-Hastings algorithm:
r_cand = r_old + s*N(0,cand_cov)
Fix the candidate covariance matrix as cand_cov0 = diag(rep(0.1, K), rep(1, K*(K-1)/2)).
Start from s0 = 2.38/sqrt(dim(r))
Repeat{
Run 500 MCMC chain.
If acceptance rate < 30% => update s1 = s0/5.
If acceptance rate > 50% => update s1 = s0*3.
(Store r draws if acceptance rate is 20~80%.)
s0 = s1
} until acceptance rate is 30~50%
Scale matrix C = s1*sqrt(cand_cov0)
Correlation matrix R = Corr(r draws)
Use C*R*C as s^2*cand_cov.
Author(s)
Peter Rossi and K. Kim, Anderson School, UCLA, perossichi@gmail.com.
References
For further discussion, see Bayesian Analysis of Random Coefficient Logit Models Using Aggregate Data by Jiang, Manchanda, and Rossi, Journal of Econometrics, 2009.
Examples
if(nchar(Sys.getenv("LONG_TEST")) != 0) {
## Simulate aggregate level data
simulData <- function(para, others, Hbatch) {
# Hbatch does the integration for computing market shares
# in batches of size Hbatch
## parameters
theta_bar <- para$theta_bar
Sigma <- para$Sigma
tau_sq <- para$tau_sq
T <- others$T
J <- others$J
p <- others$p
H <- others$H
K <- J + p
## build X
X <- matrix(runif(T*J*p), T*J, p)
inter <- NULL
for (t in 1:T) { inter <- rbind(inter, diag(J)) }
X <- cbind(inter, X)
## draw eta ~ N(0, tau_sq)
eta <- rnorm(T*J)*sqrt(tau_sq)
X <- cbind(X, eta)
share <- rep(0, J*T)
for (HH in 1:(H/Hbatch)){
## draw theta ~ N(theta_bar, Sigma)
cho <- chol(Sigma)
theta <- matrix(rnorm(K*Hbatch), nrow=K, ncol=Hbatch)
theta <- t(cho)%*%theta + theta_bar
## utility
V <- X%*%rbind(theta, 1)
expV <- exp(V)
expSum <- matrix(colSums(matrix(expV, J, T*Hbatch)), T, Hbatch)
expSum <- expSum %x% matrix(1, J, 1)
choiceProb <- expV / (1 + expSum)
share <- share + rowSums(choiceProb) / H
}
## the last K+1'th column is eta, which is unobservable.
X <- X[,c(1:K)]
return (list(X=X, share=share))
}
## true parameter
theta_bar_true <- c(-2, -3, -4, -5)
Sigma_true <- rbind(c(3,2,1.5,1), c(2,4,-1,1.5), c(1.5,-1,4,-0.5), c(1,1.5,-0.5,3))
cho <- chol(Sigma_true)
r_true <- c(log(diag(cho)), cho[1,2:4], cho[2,3:4], cho[3,4])
tau_sq_true <- 1
## simulate data
set.seed(66)
T <- 300
J <- 3
p <- 1
K <- 4
H <- 1000000
Hbatch <- 5000
dat <- simulData(para=list(theta_bar=theta_bar_true, Sigma=Sigma_true, tau_sq=tau_sq_true),
others=list(T=T, J=J, p=p, H=H), Hbatch)
X <- dat$X
share <- dat$share
## Mcmc run
R <- 2000
H <- 50
Data1 <- list(X=X, share=share, J=J)
Mcmc1 <- list(R=R, H=H, nprint=0)
set.seed(66)
out <- rbayesBLP(Data=Data1, Mcmc=Mcmc1)
## acceptance rate
out$acceptrate
## summary of draws
summary(out$thetabardraw)
summary(out$Sigmadraw)
summary(out$tausqdraw)
### plotting draws
plot(out$thetabardraw)
plot(out$Sigmadraw)
plot(out$tausqdraw)
}