Scotch {bayesm} | R Documentation |
Survey Data on Brands of Scotch Consumed
Description
Data from Simmons Survey. Brands used in last year for those respondents who report consuming scotch.
Usage
data(Scotch)
Format
A data frame with 2218 observations on 21 brand variables.
All variables are numeric vectors that are coded 1 if consumed in last year, 0 if not.
Source
Edwards, Yancy and Greg Allenby (2003), "Multivariate Analysis of Multiple Response Data," Journal of Marketing Research 40, 321–334.
References
Chapter 4, Bayesian Statistics and Marketing by Rossi, Allenby, and McCulloch.
Examples
data(Scotch)
cat(" Frequencies of Brands", fill=TRUE)
mat = apply(as.matrix(Scotch), 2, mean)
print(mat)
## use Scotch data to run Multivariate Probit Model
if(0) {
y = as.matrix(Scotch)
p = ncol(y)
n = nrow(y)
dimnames(y) = NULL
y = as.vector(t(y))
y = as.integer(y)
I_p = diag(p)
X = rep(I_p,n)
X = matrix(X, nrow=p)
X = t(X)
R = 2000
Data = list(p=p, X=X, y=y)
Mcmc = list(R=R)
set.seed(66)
out = rmvpGibbs(Data=Data, Mcmc=Mcmc)
ind = (0:(p-1))*p + (1:p)
cat(" Betadraws ", fill=TRUE)
mat = apply(out$betadraw/sqrt(out$sigmadraw[,ind]), 2 , quantile,
probs=c(0.01, 0.05, 0.5, 0.95, 0.99))
attributes(mat)$class = "bayesm.mat"
summary(mat)
rdraw = matrix(double((R)*p*p), ncol=p*p)
rdraw = t(apply(out$sigmadraw, 1, nmat))
attributes(rdraw)$class = "bayesm.var"
cat(" Draws of Correlation Matrix ", fill=TRUE)
summary(rdraw)
}
[Package bayesm version 3.1-6 Index]