plot.MCMC {bayeslm} | R Documentation |
Plot posterior summary
Description
plot.MCMC
is an S3 method to plot empirical distribution of posterior draws. The input is a MCMC
matrix
Usage
## S3 method for class 'MCMC'
plot(x,names,burnin=trunc(.1*nrow(X)),tvalues,TRACEPLOT=TRUE,DEN=TRUE,INT=TRUE,
CHECK_NDRAWS=TRUE,... )
Arguments
x |
A |
names |
an optional character vector of names for the columns of |
burnin |
Number of draws to burn-in (default value is |
tvalues |
vector of true values. |
TRACEPLOT |
logical, TRUE provide sequence plots of draws and acfs (default: |
DEN |
logical, TRUE use density scale on histograms (default: |
INT |
logical, TRUE put various intervals and points on graph (default: |
CHECK_NDRAWS |
logical, TRUE check that there are at least 100 draws (default: |
... |
optional arguments for generic function. |
Details
This function is modified from package bayesm
by Peter Rossi. It plots summary of posterior draws.
Author(s)
Peter Rossi, Anderson School, UCLA, perossichi@gmail.com.
See Also
Examples
x = matrix(rnorm(1000), 100, 10)
y = x %*% rnorm(10) + rnorm(100)
fit=bayeslm(y~x)
plot(fit$beta)