fit_dfa {bayesdfa} | R Documentation |
Fit a Bayesian DFA
Description
Fit a Bayesian DFA
Usage
fit_dfa(
y = y,
num_trends = 1,
varIndx = NULL,
scale = c("zscore", "center", "none"),
iter = 2000,
chains = 4,
thin = 1,
control = list(adapt_delta = 0.99, max_treedepth = 20),
nu_fixed = 101,
est_correlation = FALSE,
estimate_nu = FALSE,
estimate_trend_ar = FALSE,
estimate_trend_ma = FALSE,
estimate_process_sigma = FALSE,
equal_process_sigma = TRUE,
estimation = c("sampling", "optimizing", "vb", "none"),
data_shape = c("wide", "long"),
obs_covar = NULL,
pro_covar = NULL,
offset = NULL,
z_bound = NULL,
z_model = c("dfa", "proportion"),
trend_model = c("rw", "bs", "ps", "gp"),
n_knots = NULL,
knot_locs = NULL,
par_list = NULL,
family = "gaussian",
verbose = FALSE,
inv_var_weights = NULL,
likelihood_weights = NULL,
gp_theta_prior = c(3, 1),
expansion_prior = FALSE,
...
)
Arguments
y |
A matrix of data to fit. See |
num_trends |
Number of trends to fit. |
varIndx |
Indices indicating which timeseries should have shared variances. |
scale |
Character string, used to standardized data. Can be "zscore" to center and standardize data, "center" to just standardize data, or "none". Defaults to "zscore" |
iter |
Number of iterations in Stan sampling, defaults to 2000. Used for both
|
chains |
Number of chains in Stan sampling, defaults to 4. |
thin |
Thinning rate in Stan sampling, defaults to 1. |
control |
A list of options to pass to Stan sampling. Defaults to
|
nu_fixed |
Student t degrees of freedom parameter. If specified as
greater than 100, a normal random walk is used instead of a random walk
with a t-distribution. Defaults to |
est_correlation |
Boolean, whether to estimate correlation of
observation error matrix |
estimate_nu |
Logical. Estimate the student t degrees of freedom
parameter? Defaults to |
estimate_trend_ar |
Logical. Estimate AR(1) parameters on DFA trends? Defaults to 'FALSE“, in which case AR(1) parameters are set to 1 |
estimate_trend_ma |
Logical. Estimate MA(1) parameters on DFA trends? Defaults to 'FALSE“, in which case MA(1) parameters are set to 0. |
estimate_process_sigma |
Logical. Defaults FALSE, whether or not to estimate process error sigma. If not estimated, sigma is fixed at 1, like conventional DFAs. |
equal_process_sigma |
Logical. If process sigma is estimated, whether or not to estimate a single shared value across trends (default) or estimate equal values for each trend |
estimation |
Character string. Should the model be sampled using |
data_shape |
If |
obs_covar |
Optional dataframe of data with 4 named columns ("time","timeseries","covariate","value"), representing: (1) time, (2) the time series affected, (3) the covariate number for models with more than one covariate affecting each trend, and (4) the value of the covariate |
pro_covar |
Optional dataframe of data with 4 named columns ("time","trend","covariate","value"), representing: (1) time, (2) the trend affected, (3) the covariate number for models with more than one covariate affecting each trend, and (4) the value of the covariate |
offset |
a string argument representing the name of the offset variable to be included. The variable name is in the data frame passed in, e.g. "offset". This only works when the data shape is "long". All transformations (such as log transformed effort) to the offset must be done before passing in the data. |
z_bound |
Optional hard constraints for estimated factor loadings – really only applies to model with 1 trend. Passed in as a 2-element vector representing the lower and upper bound, e.g. (0, 100) to constrain positive |
z_model |
Optional argument allowing for elements of Z to be constrained to be proportions (each time series modeled as a mixture of trends). Arguments can be "dfa" (default) or "proportion" |
trend_model |
Optional argument to change the model of the underlying latent trend. By default this is set to 'rw', where the trend is modeled as a random walk - as in conentional DFA. Alternative options are 'bs', where B-splines are used to model the trends, "ps" where P-splines are used to model the trends, or 'gp', where gaussian predictive processes are used. If models other than 'rw' are used, there are some key points. First, the MA and AR parameters on these models will be turned off. Second, for B-splines and P-splines, the process_sigma becomes an optional scalar on the spline coefficients, and is turned off by default. Third, the number of knots can be specified (more knots = more wiggliness, and n_knots < N). For models with > 2 trends, each trend has their own spline coefficients estimated though the knot locations are assumed shared. If knots aren't specified, the default is N/3. By default both the B-spline and P-spline models use 3rd degree functions for smoothing, and include an intercept term. The P-spline model uses a difference penalty of 2. |
n_knots |
The number of knots for the B-spline, P-spline, or Gaussian predictive process models. Optional, defaults to round(N/3) |
knot_locs |
Locations of knots (optional), defaults to uniform spacing between 1 and N |
par_list |
A vector of parameter names of variables to be estimated by Stan. If NULL, this will default to c("x", "Z", "sigma", "log_lik", "psi","xstar") for most models – though if AR / MA, or Student-t models are used additional parameters will be monitored. If you want to use diagnostic tools in rstan, including moment_matching, you will need to pass in a larger list. Setting this argument to "all" will monitor all parameters, enabling the use of diagnostic functions – but making the models a lot larger for storage. Finally, this argument may be a custom string of parameters to monitor, e.g. c("x","sigma") |
family |
String describing the observation model. Default is "gaussian", but included options are "gamma", "lognormal", negative binomial ("nbinom2"), "poisson", or "binomial". The binomial family is assumed to have logit link, gaussian family is assumed to be identity, and the rest are log-link. |
verbose |
Whether to print iterations and information from Stan, defaults to FALSE. |
inv_var_weights |
Optional name of inverse variance weights argument in data frame. This is only implemented when data are in long format. If not entered, defaults to inv_var_weights = 1 for all observations. The implementation of inv_var_weights relies on inverse variance weightings, so that if you have standard errors associated with each observation, the inverse variance weights are calculated as inv_var_weights <- 1 / (standard_errors^2) . The observation error sigma in the likelihood then becomes sigma / sqrt(inv_var_weights) |
likelihood_weights |
Optional name of likelihood weights argument in data frame. These
are used in the same way weights are implemented in packages |
gp_theta_prior |
A 2-element vector controlling the prior on the Gaussian process parameter in cov_exp_quad. This prior is a half-Student t prior, with the first argument of gp_theta_prior being the degrees of freedom (nu), and the second element being the standard deviation |
expansion_prior |
Defaults to FALSE, if TRUE uses the parameter expansion prior of Ghosh & Dunson 2009 |
... |
Any other arguments to pass to |
Details
Note that there is nothing restricting the loadings and trends from
being inverted (i.e. multiplied by -1
) for a given chain. Therefore, if
you fit multiple chains, the package will attempt to determine which chains
need to be inverted using the function find_inverted_chains()
.
See Also
plot_loadings plot_trends rotate_trends find_swans
Examples
set.seed(42)
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
# only 1 chain and 250 iterations used so example runs quickly:
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1)
## Not run:
# example of observation error covariates
set.seed(42)
obs_covar <- expand.grid("time" = 1:20, "timeseries" = 1:3, "covariate" = 1)
obs_covar$value <- rnorm(nrow(obs_covar), 0, 0.1)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, obs_covar = obs_covar)
# example of process error covariates
pro_covar <- expand.grid("time" = 1:20, "trend" = 1:2, "covariate" = 1)
pro_covar$value <- rnorm(nrow(pro_covar), 0, 0.1)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, num_trends = 2, pro_covar = pro_covar)
# example of long format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1, ], s$y_sim[2, ], s$y_sim[3, ])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)), "time" = rep(1:20, 3))
m <- fit_dfa(y = long, data_shape = "long", iter = 50, chains = 1)
# example of long format data with obs covariates
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1, ], s$y_sim[2, ], s$y_sim[3, ])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)), "time" = rep(1:20, 3))
obs_covar <- expand.grid("time" = 1:20, "timeseries" = 1:3, "covariate" = 1:2)
obs_covar$value <- rnorm(nrow(obs_covar), 0, 0.1)
m <- fit_dfa(y = long, data_shape = "long", iter = 50, chains = 1, obs_covar = obs_covar)
# example of model with Z constrained to be proportions and wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, z_model = "proportion", iter = 50, chains = 1)
# example of model with Z constrained to be proportions and long format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1, ], s$y_sim[2, ], s$y_sim[3, ])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)), "time" = rep(1:20, 3))
m <- fit_dfa(y = long, data_shape = "long", z_model = "proportion", iter = 50, chains = 1)
#' # example of B-spline model with wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, trend_model = "bs", n_knots = 10)
#' #' # example of P-spline model with wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, trend_model = "ps", n_knots = 10)
# example of Gaussian process model with wide format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
m <- fit_dfa(y = s$y_sim, iter = 50, chains = 1, trend_model = "gp", n_knots = 5)
# example of long format data
s <- sim_dfa(num_trends = 1, num_years = 20, num_ts = 3)
obs <- c(s$y_sim[1, ], s$y_sim[2, ], s$y_sim[3, ])
long <- data.frame("obs" = obs, "ts" = sort(rep(1:3, 20)),
"time" = rep(1:20, 3), "offset" = rep(0.1,length(obs)))
m <- fit_dfa(y = long, data_shape = "long", offset = "offset", iter = 50, chains = 1)
## End(Not run)