bayes_ammi {bayesammi} | R Documentation |
Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model
Description
Performs Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model
Usage
bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)
## Default S3 method:
bayes_ammi(.data, .y, .gen, .env, .rep, .nIter)
Arguments
.data |
data.frame |
.y |
Response Variable |
.gen |
Genotypes Factor |
.env |
Environment Factor |
.rep |
Replication Factor |
.nIter |
Number of Iterations |
Value
Genotype by Environment Interaction Model
Author(s)
Muhammad Yaseen (myaseen208@gmail.com)
Jose Crossa (j.crossa@cgiar.org)
Sergio Perez-Elizalde (sergiop@colpos.mx)
Diego Jarquin (diego.jarquin@gmail.com)
Jose Miguel Cotes
Kert Viele
Genzhou Liu
Paul L. Cornelius
References
Crossa, J., Perez-Elizalde, S., Jarquin, D., Cotes, J.M., Viele, K., Liu, G., and Cornelius, P.L. (2011) Bayesian Estimation of the Additive Main Effects and Multiplicative Interaction Model Crop Science, 51, 1458–1469. (doi: 10.2135/cropsci2010.06.0343)
Examples
data(Maiz)
fm1 <-
bayes_ammi(
.data = Maiz
, .y = y
, .gen = entry
, .env = site
, .rep = rep
, .nIter = 20
)
names(fm1)
fm1$mu1
fm1$tau1
fm1$tao1
fm1$delta1
fm1$lambdas1
fm1$alphas1
fm1$gammas1
library(ggplot2)
Plot1Mu <-
ggplot(data = fm1$mu1, mapping = aes(x = 1:nrow(fm1$mu1), y = mu)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(mu), x = "Iterations") +
theme_bw()
print(Plot1Mu)
Plot2Mu <-
ggplot(data = fm1$mu1, mapping = aes(mu)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(mu)) +
theme_bw()
print(Plot2Mu)
Plot1Sigma2 <-
ggplot(data = fm1$tau1, mapping = aes(x = 1:nrow(fm1$tau1), y = tau)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(sigma^2), x = "Iterations") +
theme_bw()
print(Plot1Sigma2)
Plot2Sigma2 <-
ggplot(data = fm1$tau1, mapping = aes(tau)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(sigma^2)) +
theme_bw()
print(Plot2Sigma2)
# Plot of Alphas
Plot1Alpha1 <-
ggplot(data = fm1$tao1, mapping = aes(x = 1:nrow(fm1$tao1), y = tao1)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(alpha[1]), x = "Iterations") +
theme_bw()
print(Plot1Alpha1)
Plot2Alpha1 <-
ggplot(data = fm1$tao1, mapping = aes(tao1)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(alpha[1])) +
theme_bw()
print(Plot2Alpha1)
Plot1Alpha2 <-
ggplot(data = fm1$tao1, mapping = aes(x = 1:nrow(fm1$tao1), y = tao2)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(alpha[2]), x = "Iterations") +
theme_bw()
print(Plot1Alpha2)
Plot2Alpha2 <-
ggplot(data = fm1$tao1, mapping = aes(tao2)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(alpha[2])) +
theme_bw()
print(Plot2Alpha2)
# Plot of Betas
Plot1Beta1 <-
ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta1)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(beta[1]), x = "Iterations") +
theme_bw()
print(Plot1Beta1)
Plot2Beta1 <-
ggplot(data = fm1$delta1, mapping = aes(delta1)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(beta[1])) +
theme_bw()
print(Plot2Beta1)
Plot1Beta2 <-
ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta2)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(beta[2]), x = "Iterations") +
theme_bw()
print(Plot1Beta2)
Plot2Beta2 <-
ggplot(data = fm1$delta1, mapping = aes(delta2)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(beta[2])) +
theme_bw()
print(Plot2Beta2)
Plot1Beta3 <-
ggplot(data = fm1$delta1, mapping = aes(x = 1:nrow(fm1$delta1), y = delta3)) +
geom_line(color = "blue") +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = expression(beta[3]), x = "Iterations") +
theme_bw()
print(Plot1Beta3)
Plot2Beta3 <-
ggplot(data = fm1$delta1, mapping = aes(delta3)) +
geom_histogram() +
scale_x_continuous(labels = scales::comma) +
scale_y_continuous(labels = scales::comma) +
labs(y = "Frequency", x = expression(beta[3])) +
theme_bw()
print(Plot2Beta3)
BiplotAMMI <-
ggplot(data = fm1$alphas0, mapping = aes(x = alphas1, y = alphas2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(fm1$alphas0)),
vjust = "inward", hjust = "inward") +
geom_point(data = fm1$gammas0, mapping = aes(x = gammas1, y = gammas2)) +
geom_segment(data = fm1$gammas0,
aes(x = 0, y = 0, xend = gammas1, yend = gammas2),
arrow = arrow(length = unit(0.2, "cm"))
, alpha = 0.75, color = "red") +
geom_text(data = fm1$gammas0,
aes(x = gammas1, y = gammas2,
label = paste0("E", 1:nrow(fm1$gammas0))),
vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2]))))
, max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2]))))
, max(abs(c(range(fm1$alphas0[, 1:2], fm1$gammas0[, 1:2])))))) +
labs(title = "MCO Method", x = expression(PC[1]), y = expression(PC[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotAMMI)
BiplotBayesAMMI <-
ggplot(data = fm1$alphas1, mapping = aes(x = alphas1, y = alphas2)) +
geom_point() +
geom_hline(yintercept = 0) +
geom_vline(xintercept = 0) +
geom_text(aes(label = 1:nrow(fm1$alphas1)),
vjust = "inward", hjust = "inward") +
geom_point(data = fm1$gammas1, mapping = aes(x = gammas1, y = gammas2)) +
geom_segment(data = fm1$gammas1,
aes(x = 0, y = 0, xend = gammas1, yend = gammas2),
arrow = arrow(length = unit(0.2, "cm"))
, alpha = 0.75, color = "red") +
geom_text(data = fm1$gammas1,
aes(x = gammas1, y = gammas2,
label = paste0("E", 1:nrow(fm1$gammas1))),
vjust = "inward", hjust = "inward") +
scale_x_continuous(
limits = c(-max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2]))))
, max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))))) +
scale_y_continuous(
limits = c(-max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2]))))
, max(abs(c(range(fm1$alphas1[, 1:2], fm1$gammas1[, 1:2])))))) +
labs(title = "Bayesian Method", x = expression(PC[1]), y = expression(PC[2])) +
theme_bw() +
theme(plot.title = element_text(hjust = 0.5))
print(BiplotBayesAMMI)
[Package bayesammi version 0.1.0 Index]