complete_log_likelihood_general {bayesCureRateModel} | R Documentation |
Logarithm of the complete log-likelihood for the general cure rate model.
Description
Compute the logarithm of the complete likelihood, given a realization of the latent binary vector of cure indicators I_sim
and current values of the model parameters g
, lambda
, b
and promotion time parameters (\boldsymbol\alpha
) which yield log-density values (one per observation) stored to the vector log_f
and log-cdf values stored to the vector log_F
.
Usage
complete_log_likelihood_general(y, X, Censoring_status,
g, lambda, log_f, log_F, b, I_sim, alpha)
Arguments
y |
observed data (time-to-event or censored time) |
X |
design matrix. Should contain a column of 1's if the model has a constant term. |
Censoring_status |
binary variables corresponding to time-to-event and censoring. |
g |
The |
lambda |
The |
log_f |
A vector containing the natural logarithm of the density function of the promotion time distribution per observation, for the current set of parameters. Its length should be equal to the sample size. |
log_F |
A vector containing the natural logarithm of the cumulative density function of the promotion time distribution per observation, for the current set of parameters. Its length should be equal to the sample size. |
b |
Vector of regression coefficients. Its length should be equal to the number of columns of the design matrix. |
I_sim |
Binary vector of the current value of the latent cured status per observation. Its length should be equal to the sample size. A time-to-event cannot be cured. |
alpha |
A parameter between 0 and 1, corresponding to the temperature of the complete posterior distribution. |
Details
The complete likelihood of the model is
L_c(\boldsymbol{\theta};\boldsymbol{y}, \boldsymbol{I}) = \prod_{i\in\Delta_1}(1-p_0(\boldsymbol{x}_i,\boldsymbol\theta))f_U(y_i;\boldsymbol\theta,\boldsymbol{x}_i)\\
\prod_{i\in\Delta_0}p_0(\boldsymbol{x}_i,\boldsymbol\theta)^{1-I_i}\{(1-p_0(\boldsymbol{x}_i,\boldsymbol\theta))S_U(y_i;\boldsymbol\theta,\boldsymbol{x}_i)\}^{I_i}.
f_U
and S_U
denote the probability density and survival function of the susceptibles, respectively, that is
S_U(y_i;\boldsymbol\theta,{\boldsymbol x}_i)=\frac{S_P(y_i;\boldsymbol{\theta},{\boldsymbol x}_i)-p_0({\boldsymbol x}_i;\boldsymbol\theta)}{1-p_0({\boldsymbol x}_i;\boldsymbol\theta)}, f_U(y_i;\boldsymbol\theta,{\boldsymbol x}_i)=\frac{f_P(y_i;\boldsymbol\theta,{\boldsymbol x}_i)}{1-p_0({\boldsymbol x}_i;\boldsymbol\theta)}.
Value
A list with the following entries
cll |
the complete log-likelihood for the current parameter values. |
logS |
Vector of logS values (one for each observation). |
logP0 |
Vector of logP0 values (one for each observation). |
Author(s)
Panagiotis Papastamoulis
References
Papastamoulis and Milienos (2023). Bayesian inference and cure rate modeling for event history data. arXiv:2310.06926.
Examples
# simulate toy data
set.seed(1)
n = 4
stat = rbinom(n, size = 1, prob = 0.5)
x <- cbind(1, matrix(rnorm(n), n, 1))
y <- rexp(n)
lw <- log_weibull(y, a1 = 1, a2 = 1, c_under = 1e-9)
# compute complete log-likelihood
complete_log_likelihood_general(y = y, X = x,
Censoring_status = stat,
g = 1, lambda = 1,
log_f = lw$log_f, log_F = lw$log_F,
b = c(-0.5,0.5),
I_sim = stat, alpha = 1)