b_ttest {bayes4psy} | R Documentation |
b_ttest
Description
Bayesian t-test.
Usage
b_ttest(
data,
priors = NULL,
warmup = 1000,
iter = 2000,
chains = 4,
seed = NULL,
refresh = NULL,
control = NULL,
suppress_warnings = TRUE
)
Arguments
data |
Numeric vector of values on which the fit will be based. |
priors |
List of parameters and their priors - b_prior objects. You can put a prior on the mu (mean) and sigma (variance) parameters (default = NULL). |
warmup |
Integer specifying the number of warmup iterations per chain (default = 1000). |
iter |
Integer specifying the number of iterations (including warmup, default = 2000). |
chains |
Integer specifying the number of parallel chains (default = 4). |
seed |
Random number generator seed (default = NULL). |
refresh |
Frequency of output (default = NULL). |
control |
A named list of parameters to control the sampler's behavior (default = NULL). |
suppress_warnings |
Suppress warnings returned by Stan (default = TRUE). |
Value
An object of class 'ttest_class'.
Examples
# priors
mu_prior <- b_prior(family="normal", pars=c(0, 1000))
sigma_prior <- b_prior(family="uniform", pars=c(0, 500))
nu_prior <- b_prior(family="normal", pars=c(2000, 1000))
# attach priors to relevant parameters
priors <- list(c("mu", mu_prior),
c("sigma", sigma_prior),
c("nu", nu_prior))
# generate some data
data <- rnorm(20, mean=150, sd=20)
# fit
fit <- b_ttest(data=data, priors=priors, chains=1)
[Package bayes4psy version 1.2.12 Index]