b_success_rate {bayes4psy} | R Documentation |
b_success_rate
Description
Bayesian model for comparing test success rate.
Usage
b_success_rate(
r,
s,
priors = NULL,
warmup = 1000,
iter = 2000,
chains = 4,
seed = NULL,
refresh = NULL,
control = NULL,
suppress_warnings = TRUE
)
Arguments
r |
a vector containing test results (0 - test was not solved successfully, 1 - test was solved successfully). |
s |
a vector containing subject indexes. Starting index should be 1 and the largest subject index should equal the number of subjects. |
priors |
List of parameters and their priors - b_prior objects. You can put a prior on the p (mean probability of success) and tau (variance) parameters (default = NULL). |
warmup |
Integer specifying the number of warmup iterations per chain (default = 1000). |
iter |
Integer specifying the number of iterations (including warmup, default = 2000). |
chains |
Integer specifying the number of parallel chains (default = 4). |
seed |
Random number generator seed (default = NULL). |
refresh |
Frequency of output (default = NULL). |
control |
A named list of parameters to control the sampler's behavior (default = NULL). |
suppress_warnings |
Suppress warnings returned by Stan (default = TRUE). |
Value
An object of class 'success_rate_class'.
Examples
# priors
p_prior <- b_prior(family="beta", pars=c(1, 1))
tau_prior <- b_prior(family="uniform", pars=c(0, 500))
# attach priors to relevant parameters
priors <- list(c("p", p_prior),
c("tau", tau_prior))
# generate data
s <- rep(1:5, 20)
data <- rbinom(100, size=1, prob=0.6)
# fit
fit <- b_success_rate(r=data, s=s, priors=priors, chains=1)