opt_design {basksim} | R Documentation |
Optimize a Basket Trial Design
Description
Optimize a Basket Trial Design
Usage
opt_design(
design,
n,
alpha,
design_params = list(),
scenarios,
prec_digits,
iter = 1000,
data = NULL,
...
)
Arguments
design |
An object created with one of the |
n |
The sample size per basket. |
alpha |
The one-sided significance level. |
design_params |
A list of params that is specific to the class of
|
scenarios |
A matrix of scenarios. |
prec_digits |
Number of decimal places that are considered when adjusting lambda. |
iter |
The number of iterations in the simulation. Is ignored if
|
data |
A list of data matrices generated with |
... |
Further arguments. |
Value
A matrix with the expected number of correct decisions.
Examples
design <- setup_fujikawa(k = 3, p0 = 0.2)
scenarios <- get_scenarios(design, p1 = 0.5)
# Without simulated data
opt_design(design, n = 20, alpha = 0.05, design_params =
list(epsilon = c(1, 2), tau = c(0, 0.5)), scenarios = scenarios,
prec_digits = 3)
# With simulated data
scenario_list <- as.list(data.frame(scenarios))
data_list <- lapply(scenario_list,
function(x) get_data(k = 3, n = 20, p = x, iter = 1000))
opt_design(design, n = 20, alpha = 0.05, design_params =
list(epsilon = c(1, 2), tau = c(0, 0.5)), scenarios = scenarios,
prec_digits = 3, data = data_list)
[Package basksim version 1.0.0 Index]