calcHillBootstrap {basicdrm} | R Documentation |
Estimate Bootstrapped Confidence Intervals on Hill Model Parameters
Description
By bootsttrapping a large number of vectors, this function estimates confidence intervals on the paramters of the given Hill model. If the model already has confidence intervals estimated, they will be replaced with a warning
Usage
calcHillBootstrap(hfit, ciLevs = c(0.025, 0.975), numBoot = NULL)
Arguments
hfit |
An object of class |
ciLevs |
The lower and upper p-values for the estimated confidence interval. The default values, 0.025 and 0.975, produce a 95% confidence interval. |
numBoot |
The number of bootstrapped coefficients to be sampled. If
|
Value
An object of class hillrm
, containing all the values found in any
hillrm
object (see fitHillModel()
) as well as the following three
values:
-
ciLevs
: the values used to set the bounds of the confidence intervals -
ciCoefs
: a width-4 array of all bootstrapped Hill model coefficents sampled by the function -
ciMat
: a 2-by-4 array of values representing the estimated confidence intervals on the four Hill model parameters
Examples
conc <- c(0,2^(-6:3),Inf)
hpar <- c(1,3,0,75)
response <- evalHillModel(conc, hpar) + rnorm(length(conc),sd=7.5)
hfit <- fitHillModel(conc,response,c(1,2,3,4),start=c(0.5,1,0,100))
cihfit <- calcHillBootstrap(hfit)