preds_bbma_lin_alg {bartBMA} | R Documentation |
This function produces predictions from BART-BMA by obtaining the posterior probability weighted averaged of the posterior means for each model.
preds_bbma_lin_alg(
object,
num_iter,
burnin,
newdata = NULL,
update_resids = 1,
trainingdata
)
object |
bartBMA object obtained from function bartBMA |
num_iter |
Total number of iterations of the Gibbs sampler (including burn-in). |
burnin |
Number of burn-on iterations of the Gibbs sampler. |
newdata |
Test data for which predictions are to be produced. Default = NULL. If NULL, then produces prediction intervals for training data if no test data was used in producing the bartBMA object, or produces prediction intervals for the original test data if test data was used in producing the bartBMA object. |
update_resids |
Option for whether to update the partial residuals in the gibbs sampler. If equal to 1, updates partial residuals, if equal to zero, does not update partial residuals. The defaullt setting is to update the partial residua;s. |
trainingdata |
The matrix of training data. |
A vector of predictions.
#set the seed
set.seed(100)
#simulate some data
N <- 100
p<- 100
epsilon <- rnorm(N)
xcov <- matrix(runif(N*p), nrow=N)
y <- sin(pi*xcov[,1]*xcov[,2]) + 20*(xcov[,3]-0.5)^2+10*xcov[,4]+5*xcov[,5]+epsilon
epsilontest <- rnorm(N)
xcovtest <- matrix(runif(N*p), nrow=N)
ytest <- sin(pi*xcovtest[,1]*xcovtest[,2]) + 20*(xcovtest[,3]-0.5)^2+10*xcovtest[,4]+
5*xcovtest[,5]+epsilontest
#Train the object
bart_bma_example <- bartBMA(x.train = xcov,y.train=y,x.test=xcovtest,zero_split = 1,
only_max_num_trees = 1,split_rule_node = 0)
#Obtain the prediction intervals
preds_bbma_lin_alg(bart_bma_example,1000,100,newdata=xcovtest)