sim_Friedman3 {bark}R Documentation

Simulated Regression Problem Friedman 3

Description

The regression problem Friedman 3 as described in Friedman (1991) and Breiman (1996). Inputs are 4 independent variables uniformly distributed over the ranges

0 \le x1 \le 100

40 \pi \le x2 \le 560 \pi

0 \le x3 \le 1

1 \le x4 \le 11

The outputs are created according to the formula

\mbox{atan}((x2 x3 - (1/(x2 x4)))/x1) + e

where e is N(0,sd^2).

Usage

sim_Friedman3(n, sd = 0.1)

Arguments

n

number of data points to create

sd

Standard deviation of noise. The default value of 125 gives a signal to noise ratio (i.e., the ratio of the standard deviations) of 3:1. Thus, the variance of the function itself (without noise) accounts for 90% of the total variance.

Value

Returns a list with components

x

input values (independent variables)

y

output values (dependent variable)

References

Breiman, Leo (1996) Bagging predictors. Machine Learning 24, pages 123-140.
Friedman, Jerome H. (1991) Multivariate adaptive regression splines. The Annals of Statistics 19 (1), pages 1-67.

See Also

Other bark simulation functions: sim_Friedman1(), sim_Friedman2(), sim_circle()

Other bark functions: bark-package-deprecated, bark-package, bark(), sim_Friedman1(), sim_Friedman2(), sim_circle()

Examples

sim_Friedman3(n=100, sd=0.1)

[Package bark version 1.0.4 Index]