svabaaddon {bapred} | R Documentation |
Addon batch effect adjustment using frozen SVA
Description
Performs addon batch effect adjustment using frozen SVA. Takes the output of performing svaba
on a training data set and new batch data and correspondingly adjusts the test data to better match the adjusted training data according to the SVA model.
Usage
svabaaddon(params, x)
Arguments
params |
object of class |
x |
matrix. The covariate matrix of the new data. Observations in rows, variables in columns. |
Value
The adjusted covariate matrix of the test data.
Note
It is not recommended to perform frozen SVA in cross-study prediction settings, because it assumes similarity between training and test set and has been observed to (strongly) impair prediction performance in cases where this assumption is not given. Given a not too small test set, the following methods are recommended (Hornung et al., 2016): combatba
, meancenter
, ratioa
, ratiog
.
Author(s)
Roman Hornung
References
Leek, J. T., Storey, J. D. (2007). Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis. PLoS Genetics 3:1724-1735, <doi: 10.1371/journal.pgen.0030161>.
Parker, H. S., Bravo, H. C., Leek, J. T. (2014). Removing batch effects for prediction problems with frozen surrogate variable analysis. PeerJ 2:e561, <doi: 10.7717/peerj.561>.
Hornung, R., Causeur, D., Bernau, C., Boulesteix, A.-L. (2017). Improving cross-study prediction through addon batch effect adjustment and addon normalization. Bioinformatics 33(3):397–404, <doi: 10.1093/bioinformatics/btw650>.
Examples
data(autism)
# Random subset of 150 variables:
set.seed(1234)
Xsub <- X[,sample(1:ncol(X), size=150)]
# In cases of batches with more than 20 observations
# select 20 observations at random:
subinds <- unlist(sapply(1:length(levels(batch)), function(x) {
indbatch <- which(batch==x)
if(length(indbatch) > 20)
indbatch <- sort(sample(indbatch, size=20))
indbatch
}))
Xsub <- Xsub[subinds,]
batchsub <- batch[subinds]
ysub <- y[subinds]
trainind <- which(batchsub %in% c(1,2))
Xsubtrain <- Xsub[trainind,]
ysubtrain <- ysub[trainind]
batchsubtrain <- factor(as.numeric(batchsub[trainind]), levels=c(1,2))
testind <- which(batchsub %in% c(3,4))
Xsubtest <- Xsub[testind,]
ysubtest <- ysub[testind]
batchsubtest <- as.numeric(batchsub[testind])
batchsubtest[batchsubtest==3] <- 1
batchsubtest[batchsubtest==4] <- 2
batchsubtest <- factor(batchsubtest, levels=c(1,2))
params <- svaba(x=Xsubtrain, y=ysubtrain, batch=batchsubtrain)
Xsubtestaddon <- svabaaddon(params, x=Xsubtest)