WAIC {bamlss} | R Documentation |
Watanabe-Akaike Information Criterion (WAIC)
Description
Function returning the Watanabe-Akaike Information Criterion (WAIC) of a fitted model object.
Usage
WAIC(object, ..., newdata = NULL)
Arguments
object |
A fitted model object which contains MCMC samples. |
... |
Optionally more fitted model objects. |
newdata |
Optionally, use new data for computing the WAIC. |
Value
A data frame containing the WAIC and estimated number of parameters.
References
Watanabe S. (2010). Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory. The Journal of Machine Learning Research, 11, 3571–3594. https://jmlr.org/papers/v11/watanabe10a.html
Examples
## Not run: d <- GAMart()
b1 <- bamlss(num ~ s(x1), data = d)
b2 <- bamlss(num ~ s(x1) + s(x2), data = d)
WAIC(b1, b2)
## End(Not run)
[Package bamlss version 1.2-4 Index]