assign_model {baker}R Documentation

Interpret the specified model structure

Description

assign_model translates options specified by a user (e.g., in model_options) into information that can be understood by baker.

Usage

assign_model(model_options, data_nplcm, silent = TRUE)

Arguments

model_options

See nplcm() function.

data_nplcm

Data. See nplcm() function for data structure.

silent

Default is TRUE for no messages; FALSE otherwise.

Details

assign_model will be modified to check if data are conformable to specified model.

Value

A list of model specifications:

Examples

cause_list <- c(LETTERS[1:6]) 
J.BrS <- 6
model_options_no_reg <- list(
likelihood   = list(
  cause_list = cause_list,
  k_subclass = 2,
  Eti_formula = ~-1, 
  # no covariate for the etiology regression
  FPR_formula = list(
    MBS1 =   ~-1)    
    # no covariate for the subclass weight regression
),
use_measurements = c("BrS"), 
# use bronze-standard data only for model estimation.
prior= list(
  Eti_prior = overall_uniform(1,cause_list), 
  # Dirichlet(1,...,1) prior for the etiology.
  TPR_prior  = list(BrS = list(
    info  = "informative", # informative prior for TPRs
    input = "match_range", 
    # specify the informative prior for TPRs by specifying a plausible range.
    val = list(MBS1 = list(up =  list(rep(0.99,J.BrS)), 
    # upper ranges: matched to 97.5% quantile of a Beta prior
                           low = list(rep(0.55,J.BrS))))
                           # lower ranges: matched to 2.5% quantile of a Beta prior
  )
  )
)
)     
data("data_nplcm_noreg")

assign_model(model_options_no_reg,data_nplcm_noreg)


[Package baker version 1.0.3 Index]