| seBeta {bain} | R Documentation | 
Standard Errors and CIs for Standardized Regression Coefficients
Description
Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients
Usage
seBeta(
  X = NULL,
  y = NULL,
  cov.x = NULL,
  cov.xy = NULL,
  var.y = NULL,
  Nobs = NULL,
  alpha = 0.05,
  estimator = "ADF"
)
Arguments
| X | Matrix of predictor scores. | 
| y | Vector of criterion scores. | 
| cov.x | Covariance or correlation matrix of predictors. | 
| cov.xy | Vector of covariances or correlations between predictors and criterion. | 
| var.y | Criterion variance. | 
| Nobs | Number of observations. | 
| alpha | Desired Type I error rate; default = .05. | 
| estimator | 'ADF' or 'Normal' confidence intervals - requires raw X and raw y; default = 'ADF'. | 
Value
| cov.Beta | Normal theory or ADF covariance matrix of standardized regression coefficients. | 
| se.Beta | standard errors for standardized regression coefficients. | 
| alpha | desired Type-I error rate. | 
| CI.Beta | Normal theory or ADF (1-alpha) intervals for standardized regression coefficients. | 
| estimator | estimator = "ADF" or "Normal". | 
Author(s)
Jeff Jones and Niels Waller
References
Jones, J. A, and Waller, N. G. (2015). The Normal-Theory and Asymptotic Distribution-Free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80, 365-378.
Examples
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- sesamesim[, c("peabody", "prenumb", "postnumb")]
y <- sesamesim$age
results <- seBeta(X, y, Nobs = nrow(sesamesim), alpha = .05, estimator = 'ADF')
print(results, digits = 3)
library(MASS)
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
Beta <- c(.2, .3, .4)
y <- X %*% Beta + .64 * scale(rnorm(200))
results <- seBeta(X, y, Nobs = 200, alpha = .05, estimator = 'ADF')
print(results, digits = 3)