seBeta {bain} | R Documentation |
Standard Errors and CIs for Standardized Regression Coefficients
Description
Computes Normal Theory and ADF Standard Errors and CIs for Standardized Regression Coefficients
Usage
seBeta(
X = NULL,
y = NULL,
cov.x = NULL,
cov.xy = NULL,
var.y = NULL,
Nobs = NULL,
alpha = 0.05,
estimator = "ADF"
)
Arguments
X |
Matrix of predictor scores. |
y |
Vector of criterion scores. |
cov.x |
Covariance or correlation matrix of predictors. |
cov.xy |
Vector of covariances or correlations between predictors and criterion. |
var.y |
Criterion variance. |
Nobs |
Number of observations. |
alpha |
Desired Type I error rate; default = .05. |
estimator |
'ADF' or 'Normal' confidence intervals - requires raw X and raw y; default = 'ADF'. |
Value
cov.Beta |
Normal theory or ADF covariance matrix of standardized regression coefficients. |
se.Beta |
standard errors for standardized regression coefficients. |
alpha |
desired Type-I error rate. |
CI.Beta |
Normal theory or ADF (1-alpha) intervals for standardized regression coefficients. |
estimator |
estimator = "ADF" or "Normal". |
Author(s)
Jeff Jones and Niels Waller
References
Jones, J. A, and Waller, N. G. (2015). The Normal-Theory and Asymptotic Distribution-Free (ADF) covariance matrix of standardized regression coefficients: Theoretical extensions and finite sample behavior. Psychometrika, 80, 365-378.
Examples
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- sesamesim[, c("peabody", "prenumb", "postnumb")]
y <- sesamesim$age
results <- seBeta(X, y, Nobs = nrow(sesamesim), alpha = .05, estimator = 'ADF')
print(results, digits = 3)
library(MASS)
set.seed(123)
R <- matrix(.5, 3, 3)
diag(R) <- 1
X <- mvrnorm(n = 200, mu = rep(0, 3), Sigma = R, empirical = TRUE)
Beta <- c(.2, .3, .4)
y <- X %*% Beta + .64 * scale(rnorm(200))
results <- seBeta(X, y, Nobs = 200, alpha = .05, estimator = 'ADF')
print(results, digits = 3)