bacr-package {bacr} | R Documentation |
Bayesian Adjustment for Confounding
Description
This package implements the Bayesian Adjustment for Confounding (BAC) algorithm for estiamting the Average Causal Effect (ACE) in Generalized Linear Models. It accounts for uncertainty in confounder and effect modifier selection and allows estimation of the ACE for the whole population or for a specific subpopulation.
Details
Package: | bacr |
Type: | Package |
Version: | 1.0.1 |
Depends: | R(>= 2.13.0), graphics, stats, MCMCpack |
Date: | 2016-10-23 |
License: | GPL-2 |
Author(s)
Chi Wang
Maintainer: Chi Wang <chi.wang@uky.edu>
References
Wang C, Dominici F, Parmigiani G, Zigler CW.
Accounting for Uncertainty in Confounder and Effect Modifier
Selection When Estimating Average Causal Effects in Generalized
Linear Models.
Biometrics, 71(3): 654-665, 2015.
Examples
######## Note that the example below is for illustration purpose only. ####
######## In practice, larger number of iterations will be needed.##########
##### simulate data ############
n = 200; m = 4
V = matrix(rnorm(n*m),ncol=m)
X = rbinom(n, size=1, prob=exp(V[,1])/(1+exp(V[,1])))
beta = c(1,1,1,0.5)
temp0 = cbind(rep(0,n), V[,1:3])
temp1 = cbind(rep(1,n), V[,1:3])
Y0 = rbinom(n, size=1, prob=exp(temp0)/(1+exp(temp0)))
Y1 = rbinom(n, size=1, prob=exp(temp1)/(1+exp(temp1)))
Y = Y0
Y[X==1] = Y1[X==1]
Z = as.data.frame(cbind(Y, X, V))
names(Z) = c("Y", "X", paste("V", 1:m, sep=""))
##### run BAC #################
result = bac(data=Z, exposure="X", outcome="Y", confounders=paste("V", 1:m, sep=""),
interactors=NULL, familyX="binomial", familyY="binomial", omega=Inf,
num_its=5, burnM=1, burnB=1, thin=1)
##### summarize results ########
summary(result)
plot(result)
### Adding interaction terms #############
beta = c(1,1,1,1,1)
temp0 = cbind(rep(0,n), V[,1:3], rep(0,n)*V[,3])
temp1 = cbind(rep(1,n), V[,1:3], rep(1,n)*V[,3])
Y0 = rbinom(n, size=1, prob=exp(temp0)/(1+exp(temp0)))
Y1 = rbinom(n, size=1, prob=exp(temp1)/(1+exp(temp1)))
Y = Y0
Y[X==1] = Y1[X==1]
Z = as.data.frame(cbind(Y, X, V))
names(Z) = c("Y", "X", paste("V", 1:m, sep=""))
result = bac(data=Z, exposure="X", outcome="Y", confounders=paste("V", 1:m, sep=""),
interactors=paste("V", 1:m, sep=""), familyX="binomial", familyY="binomial",
omega=Inf, num_its=5, burnM=1, burnB=1, thin=1)
summary(result)
plot(result)
##### Estimate the ACE in the exposed subgroup #################
result = bac(data=Z, exposure="X", outcome="Y", confounders=paste("V", 1:m, sep=""),
interactors=paste("V", 1:m, sep=""), familyX="binomial", familyY="binomial",
omega=Inf, num_its=5, burnM=1, burnB=1, thin=1, population=(X==1))
summary(result)
plot(result)
[Package bacr version 1.0.1 Index]