bacisCheckDIC {bacistool} | R Documentation |
Compute the DIC value for the classification model.
Description
In this function, the classification model is applied using the input parameter values and the DIC value is calculated.
Usage
bacisCheckDIC(numGroup, tau1, tau2, phi1, phi2,
MCNum, nDat, xDat, seed)
Arguments
numGroup |
Number of subgroups in the trial. |
tau1 |
The precision parameter of subgroups clustering for the classification model. |
tau2 |
The precision prior for the latent variable for the classification. |
phi1 |
Center for the low response rate cluster. |
phi2 |
Center for the high response rate cluster. |
MCNum |
The number of MCMC sampling iterations. |
nDat |
The vector of total sample sizes of all subgroups. |
xDat |
The vector of the response numbers of all subgroups. |
seed |
Random seed value. If its value is NA, a time dependent random seed is generated and applied. |
Value
The classification model is applied using the input parameter values and the DIC value is returned.
Author(s)
Nan Chen and J. Jack Lee / Department of Biostatistics UT MD Anderson Cancer Center
Examples
## An example to compute the DIC value.
library(bacistool)
result<-bacisCheckDIC(numGroup=5,
tau1=NA,
tau2=.001,
phi1=0.1, phi2=0.3,
MCNum=5000,
nDat=c(25,25,25,25,25),
xDat=c(3,4,3,8,7),
seed=100
)