acceptreject {bSims} | R Documentation |
Spatial point process simulator
Description
Spatial point process simulator based on accept/reject algorithm.
Usage
acceptreject(n, f = NULL, x0 = 0, x1 = 1, y0 = 0, y1 = 1,
m = 0, maxit = 100, fail = FALSE)
Arguments
n |
number of points to generate. |
f |
a function returning probability (value between 0 and 1) given distance as
the first and only argument. The function generates
spatially uniform Poisson point process (complete spatial randomness)
when |
x0 , x1 , y0 , y1 |
x and y ranges (bounding box). |
m |
margin width for avoiding edge effects. |
maxit |
maximum number of iterations per point to try if no acceptance happens. |
fail |
logical, what to do when there is a problem.
|
Value
A matrix with n
rows and 2 columns for x and y coordinates.
Author(s)
Peter Solymos
Examples
## complete spatial randomness
plot(acceptreject(100), asp=1)
## more systematic
distance <- seq(0,1,0.01)
f <- function(d)
(1-exp(-d^2/0.1^2) + dlnorm(d, 0.2)/dlnorm(exp(0.2-1),0.2)) / 2
op <- par(mfrow = c(1, 2))
plot(distance, f(distance), type="l")
plot(acceptreject(100, f, m=1), asp=1)
par(op)
## more clustered
f <- function(d)
exp(-d^2/0.1^2) + 0.5*(1-exp(-d^2/0.4^2))
op <- par(mfrow = c(1, 2))
plot(distance, f(distance), type="l")
plot(acceptreject(100, f, m=1), asp=1)
par(op)
[Package bSims version 0.3-2 Index]