aweSOMscreeplot {aweSOM} | R Documentation |
Screeplot of SOM superclasses
Description
The screeplot, helps deciding the optimal number of superclasses. Available for both PAM and hierarchical clustering.
Usage
aweSOMscreeplot(
som,
nclass = 2,
method = c("hierarchical", "pam"),
hmethod = c("complete", "ward.D2", "ward.D", "single", "average", "mcquitty", "median",
"centroid")
)
Arguments
som |
|
nclass |
number of superclasses to be visualized in the screeplot. Default is 2. |
method |
Method used for clustering. Hierarchical clustering ("hierarchical") and Partitioning around medoids ("pam") can be used. Default is hierarchical clustering. |
hmethod |
For hierarchicical clustering, the clustering method, by
default "complete". See the |
Value
No return value, called for side effects.
Examples
## Build training data
dat <- iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")]
### Scale training data
dat <- scale(dat)
## Train SOM
### Initialization (PCA grid)
init <- somInit(dat, 4, 4)
ok.som <- kohonen::som(dat, grid = kohonen::somgrid(4, 4, 'hexagonal'),
rlen = 100, alpha = c(0.05, 0.01),
radius = c(2.65,-2.65),
init = init, dist.fcts = 'sumofsquares')
## Group cells into superclasses (PAM clustering)
superclust <- cluster::pam(ok.som$codes[[1]], 2)
superclasses <- superclust$clustering
aweSOMscreeplot(ok.som, method = 'hierarchical',
hmethod = 'complete', nclass = 2)
[Package aweSOM version 1.3 Index]