| automl_train {automl} | R Documentation | 
automl_train
Description
The multi deep neural network automatic train function (several deep neural networks are trained with automatic hyperparameters tuning, best model is kept)
This function launches the automl_train_manual function by passing it parameters
for each particle at each converging step
Usage
automl_train(Xref, Yref, autopar = list(), hpar = list(), mdlref = NULL)
Arguments
Xref | 
 inputs matrix or data.frame (containing numerical values only)  | 
Yref | 
 target matrix or data.frame (containing numerical values only)  | 
autopar | 
  list of parameters for hyperparameters optimization, see autopar section  | 
hpar | 
  list of parameters and hyperparameters for Deep Neural Network, see hpar section  | 
mdlref | 
  model trained with automl_train to start training with saved hpar and autopar
(not the model)  | 
Examples
## Not run: 
##REGRESSION (predict Sepal.Length given other Iris parameters)
data(iris)
xmat <- cbind(iris[,2:4], as.numeric(iris$Species))
ymat <- iris[,1]
amlmodel <- automl_train(Xref = xmat, Yref = ymat)
## End(Not run)
##CLASSIFICATION (predict Species given other Iris parameters)
data(iris)
xmat = iris[,1:4]
lab2pred <- levels(iris$Species)
lghlab <- length(lab2pred)
iris$Species <- as.numeric(iris$Species)
ymat <- matrix(seq(from = 1, to = lghlab, by = 1), nrow(xmat), lghlab, byrow = TRUE)
ymat <- (ymat == as.numeric(iris$Species)) + 0
#with gradient descent and random hyperparameters sets
amlmodel <- automl_train(Xref = xmat, Yref = ymat,
                          autopar = list(numiterations = 1, psopartpopsize = 1, seed = 11),
                          hpar = list(numiterations = 10))